Objective Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase(TOPK)was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistanc...Objective Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase(TOPK)was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer.However,the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer(CRC)cells is unclear.This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells.Methods The expression of TOPK was detected in CRC tissues by immunohistochemistry,and the effect of TOPK knockdown was detected in CRC cells by Western blotting.CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells.Furthermore,proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy.DNA damage was detected by the comet assay.Changes in the DNA damage response signaling pathway were analyzed by Western blotting,and apoptosis was detected by flow cytometry.Results The expression of TOPK was significantly greater in CRC tissues at grades 2–4 than in those at grade 1.After irradiation,CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins,including phospho-cyclin-dependent kinase 1(p-CDK1),phospho-ataxia telangiectasia-mutated(p-ATM),poly ADP-ribose polymerase(PARP),and meiotic recombination 11 homolog 1(MRE11).Conclusions TOPK was overexpressed in patients with moderately to poorly differentiated CRC.Moreover,TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response.展开更多
Grasp detection is a visual recognition task where the robot makes use of its sensors to detect graspable objects in its environment.Despite the steady progress in robotic grasping,it is still difficult to achieve bot...Grasp detection is a visual recognition task where the robot makes use of its sensors to detect graspable objects in its environment.Despite the steady progress in robotic grasping,it is still difficult to achieve both real-time and high accuracy grasping detection.In this paper,we propose a real-time robotic grasp detection method,which can accurately predict potential grasp for parallel-plate robotic grippers using RGB images.Our work employs an end-to-end convolutional neural network which consists of a feature descriptor and a grasp detector.And for the first time,we add an attention mechanism to the grasp detection task,which enables the network to focus on grasp regions rather than background.Specifically,we present an angular label smoothing strategy in our grasp detection method to enhance the fault tolerance of the network.We quantitatively and qualitatively evaluate our grasp detection method from different aspects on the public Cornell dataset and Jacquard dataset.Extensive experiments demonstrate that our grasp detection method achieves superior performance to the state-of-the-art methods.In particular,our grasp detection method ranked first on both the Cornell dataset and the Jacquard dataset,giving rise to the accuracy of 98.9%and 95.6%,respectively at realtime calculation speed.展开更多
The high fire safety of polymer nanocomposites is being pursued by research institutions around the world.In addition to intrinsic flame retardancy strategy,the additive-type flame retardants have attracted increasing...The high fire safety of polymer nanocomposites is being pursued by research institutions around the world.In addition to intrinsic flame retardancy strategy,the additive-type flame retardants have attracted increasing attention due to low commercial cost and easy fabrication craft.However,traditional additive-type flame retardants usually need high addition amount to achieve a desirable effect which causes many side-effects on the overall performance of polymer materials,such as deteriorated mechanical property and processability.At present two-dimensional(2D)nanomaterials have also been applied to reduce the fire hazards of polymer(nano)composites with the coupling of barrier function and catalysis as well as carbonization effect.Even though most research work mainly focus on graphene-based flame retardants,more emerging two-dimensional nanomaterials are taking away research attention,due to their complementary and unique properties,mainly including hexagonal boron nitride(h-BN),molybdenum disulfide(MoS2),metal organic frameworks(MOF),carbon nitride(CN),titanium carbide(MXene)and black phosphorene(BP).In this review,except for graphene,the flame retardant mechanism involving different layered nanomaterials are also reviewed.Meanwhile,the functionalization method and flame retardancy effect of different layered nanomaterials are emphatically discussed for offering an effective reference to solve the fire hazards of polymer materials.Moreover,this work objectively evaluates the practical significance of polymer/layered nanomaterials composites for industrial application.展开更多
基金supported by the Guangxi Zhuang Autonomous Region Program of China(No.Z-C20220797)Guangxi Science and Technology Planning Project of China(No.Guike AD20297047)National Natural Science Foundation of China(No.81902849).
文摘Objective Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase(TOPK)was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer.However,the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer(CRC)cells is unclear.This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells.Methods The expression of TOPK was detected in CRC tissues by immunohistochemistry,and the effect of TOPK knockdown was detected in CRC cells by Western blotting.CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells.Furthermore,proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy.DNA damage was detected by the comet assay.Changes in the DNA damage response signaling pathway were analyzed by Western blotting,and apoptosis was detected by flow cytometry.Results The expression of TOPK was significantly greater in CRC tissues at grades 2–4 than in those at grade 1.After irradiation,CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins,including phospho-cyclin-dependent kinase 1(p-CDK1),phospho-ataxia telangiectasia-mutated(p-ATM),poly ADP-ribose polymerase(PARP),and meiotic recombination 11 homolog 1(MRE11).Conclusions TOPK was overexpressed in patients with moderately to poorly differentiated CRC.Moreover,TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response.
基金supported by the National Key Research and Development Program of China under Grant No.2018AAA010-3002the National Natural Science Foundation of China under Grant Nos.62172392,61702482 and 61972379.
文摘Grasp detection is a visual recognition task where the robot makes use of its sensors to detect graspable objects in its environment.Despite the steady progress in robotic grasping,it is still difficult to achieve both real-time and high accuracy grasping detection.In this paper,we propose a real-time robotic grasp detection method,which can accurately predict potential grasp for parallel-plate robotic grippers using RGB images.Our work employs an end-to-end convolutional neural network which consists of a feature descriptor and a grasp detector.And for the first time,we add an attention mechanism to the grasp detection task,which enables the network to focus on grasp regions rather than background.Specifically,we present an angular label smoothing strategy in our grasp detection method to enhance the fault tolerance of the network.We quantitatively and qualitatively evaluate our grasp detection method from different aspects on the public Cornell dataset and Jacquard dataset.Extensive experiments demonstrate that our grasp detection method achieves superior performance to the state-of-the-art methods.In particular,our grasp detection method ranked first on both the Cornell dataset and the Jacquard dataset,giving rise to the accuracy of 98.9%and 95.6%,respectively at realtime calculation speed.
基金the National Natural Science Foundation of China(Nos.51761135113,51911530127 and 51973203)the Fundamental Research Funds for the Central Universities(No.WK2320000043).
文摘The high fire safety of polymer nanocomposites is being pursued by research institutions around the world.In addition to intrinsic flame retardancy strategy,the additive-type flame retardants have attracted increasing attention due to low commercial cost and easy fabrication craft.However,traditional additive-type flame retardants usually need high addition amount to achieve a desirable effect which causes many side-effects on the overall performance of polymer materials,such as deteriorated mechanical property and processability.At present two-dimensional(2D)nanomaterials have also been applied to reduce the fire hazards of polymer(nano)composites with the coupling of barrier function and catalysis as well as carbonization effect.Even though most research work mainly focus on graphene-based flame retardants,more emerging two-dimensional nanomaterials are taking away research attention,due to their complementary and unique properties,mainly including hexagonal boron nitride(h-BN),molybdenum disulfide(MoS2),metal organic frameworks(MOF),carbon nitride(CN),titanium carbide(MXene)and black phosphorene(BP).In this review,except for graphene,the flame retardant mechanism involving different layered nanomaterials are also reviewed.Meanwhile,the functionalization method and flame retardancy effect of different layered nanomaterials are emphatically discussed for offering an effective reference to solve the fire hazards of polymer materials.Moreover,this work objectively evaluates the practical significance of polymer/layered nanomaterials composites for industrial application.