Molluscan shells are fascinating examples of highly ordered hierarchical structure and complex organic-inorganic biocomposite material. However, their anti-wear properties were rarely studied especially in the perspec...Molluscan shells are fascinating examples of highly ordered hierarchical structure and complex organic-inorganic biocomposite material. However, their anti-wear properties were rarely studied especially in the perspective of biological coupling. So in the current study three typical shells, Scapharca subcrenata, Rapana venosa and Acanthochiton rubrolineatus, were selected as coupling models to further study their anti-wear properties. Stereomicroscope and scanning electron microscopic observations showed that all these three shells had specific surface morphologies and complicated section microstructures. Importantly, a special structure, pore canal tubules, was discovered in the shells of Scapharca subcrenata and Acanthochiton rubrolineatus, which probably contributed most to their anti-wear properties. X-ray diffraction and micro-Vikers hardness tester were further adopted to analyze the phase compositions and micro-hardness of the shells. The measured results demonstrated that aragonite was the most extensive phase present in the shell, and possesed a relatively high micro-hardness. In this paper, the shells were described in details in morphology, structure and material with emphasis on the relationship with anti-wear property. The study revealed that the selected seashells possess distinct anti-wear properties by complicated mechanisms involving the integrated functions of multiple biological coupling elements, and this would provide inspiration to the design of new bionic wear resistance components.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50635030)the Key Technologies Research and Devolpment Program of Jilin Province (Grant No. 09ZDGG001)the Postdoctoral Natural Science Foundation of China (Grant No. 20090461036)
文摘Molluscan shells are fascinating examples of highly ordered hierarchical structure and complex organic-inorganic biocomposite material. However, their anti-wear properties were rarely studied especially in the perspective of biological coupling. So in the current study three typical shells, Scapharca subcrenata, Rapana venosa and Acanthochiton rubrolineatus, were selected as coupling models to further study their anti-wear properties. Stereomicroscope and scanning electron microscopic observations showed that all these three shells had specific surface morphologies and complicated section microstructures. Importantly, a special structure, pore canal tubules, was discovered in the shells of Scapharca subcrenata and Acanthochiton rubrolineatus, which probably contributed most to their anti-wear properties. X-ray diffraction and micro-Vikers hardness tester were further adopted to analyze the phase compositions and micro-hardness of the shells. The measured results demonstrated that aragonite was the most extensive phase present in the shell, and possesed a relatively high micro-hardness. In this paper, the shells were described in details in morphology, structure and material with emphasis on the relationship with anti-wear property. The study revealed that the selected seashells possess distinct anti-wear properties by complicated mechanisms involving the integrated functions of multiple biological coupling elements, and this would provide inspiration to the design of new bionic wear resistance components.