We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magne...We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.展开更多
Recent experimental and theoretical work has focused on two-dimensional van der Waals(2D vdW)magnets due to their potential applications in sensing and spintronics devises.In measurements of these emerging materials,c...Recent experimental and theoretical work has focused on two-dimensional van der Waals(2D vdW)magnets due to their potential applications in sensing and spintronics devises.In measurements of these emerging materials,conventional magnetometry often encounters challenges in characterizing the magnetic properties of small-sized vdW materials,especially for antiferromagnets with nearly compensated magnetic moments.Here,we investigate the magnetism of 2D antiferromagnet CrPS_(4)with a thickness of 8nm by using dynamic cantilever magnetometry(DCM).展开更多
Chaenomeles speciosa(Sweet)Nakai cultivated widely in temperate regions possesses anti-inflammatory properties,however,the underlying molecular mechanisms remain not fully understood.In this study,a purified phenolic ...Chaenomeles speciosa(Sweet)Nakai cultivated widely in temperate regions possesses anti-inflammatory properties,however,the underlying molecular mechanisms remain not fully understood.In this study,a purified phenolic extract of C.speciosa rich in chlorogenic acid,procyanidin B1 and catechin(determined by HPLC-Q-TOF-MS/MS)exhibited dose-dependent anti-inflammatory effects on lipopolysaccharide(LPS)-treated RAW264.7 macrophages.The extract at 30μg/mL was most potent and enabled most cells in normal morphology under LPS stimulation without causing cytotoxicity.The extract suppressed the levels of nitric oxide(NO),tumor necrosis factor-α(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1β),and the mRNA and protein expressions of nitric oxide synthase(iNOS)and cyclooxygenase-2(COX-2).The mechanisms underlying such anti-inflammatory actions included the regulation of phosphorylation of related proteins to monitor the expressions of inflammatory mediators and genes in the nuclear factor kappa-B(NF-κB)and mitogen-activated protein kinase(MAPK)signaling pathways.Therefore,the phenolic extract from C.speciosa is a desirable anti-inflammatory agent for inflammatory conditions to meet the rising demand for natural and cost-effective therapeutics.展开更多
The electronic and superconducting properties of Fe_(1-δ)Se single-crystal flakes grown hydrothermally are studied by the transport measurements under zero and high magnetic fields up to 38.5 T.The results contrast s...The electronic and superconducting properties of Fe_(1-δ)Se single-crystal flakes grown hydrothermally are studied by the transport measurements under zero and high magnetic fields up to 38.5 T.The results contrast sharply with those previously reported for nematically ordered Fe Se by chemical-vapor-transport(CVT)growth.No signature of the electronic nematicity,but an evident metal-to-nonmetal crossover with increasing temperature,is detected in the normal state of the present hydrothermal samples.Interestingly,a higher superconducting critical temperature T_c of 13.2 K is observed compared to a suppressed T_c of 9 K in the presence of the nematicity in the CVT Fe Se.Moreover,the upper critical field in the zero-temperature limit is found to be isotropic with respect to the field direction and to reach a higher value of-42 T,which breaks the Pauli limit by a factor of 1.8.展开更多
Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical ...Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical and basin modeling analysis,hydrocarbon generation capacity and process of the Paleocene E_(1)y,E_(1)l and E_(1)m formations were investigated.Results show that E_(1)y and E_(1)l mudstones are high-quality source rocks with Type Ⅱ kerogen,which is dominated by both aquatic organisms and terrestrial higher plants deposited in sub-reduced environment.E_(1)m mudstone interbedded with thin carbonaceous mudstone and coal is poor-quality source rock with Type Ⅲ kerogen,whose organic matter was originated from terrestrial higher plants under oxidized environment.Controlled by burial and maturity histories,E_(1)y and E_(1)l source rocks experienced two hydrocarbon generation stages,which took place in the Late Paleocene and in the Middle to Late Eocene,respectively,and had high hydrocarbon generation capacity with cumulative hydrocarbon volume of 363 and 328 mg/g,respectively.E_(1)m source rock only had one hydrocarbon generation process in the Late Eocene,which had low hydrocarbon generation capacity with cumulative hydrocarbon volume of only 24 mg/g.The future oil-gas exploration in the Jiaojiang sag should focus on hydrocarbon generation center and select targets in the central uplift formed before the Miocene with high-quality traps.展开更多
Recently, 12442 system of Fe-based superconductors has attracted considerable attention owing to its unique double-Fe As-layer structure. A steep increase in the in-plane upper critical field with cooling has been obs...Recently, 12442 system of Fe-based superconductors has attracted considerable attention owing to its unique double-Fe As-layer structure. A steep increase in the in-plane upper critical field with cooling has been observed near the superconducting transition temperature, Tc, in KCa2Fe4As4F2 single crystals. Herein, we report a high-field investigation on upper critical field of this material over a wide temperature range, and both out-of-plane(H∥c, Hc2c) and in-plane(H∥ab, Hc2ab ) directions have been measured.A sublinear temperature-dependent behavior is observed for the out-of-plane Hc2c , whereas strong convex curvature with cooling is observed for the in-plane Hc2ab . Such behaviors could not be described by the conventional Werthamer-Helfand-Hohenberg(WHH) model. The data analysis based on the WHH model by considering the spin aspects reveals a large Maki parameter α=9,indicating that the in-plane upper critical field is affected by a very strong Pauli paramagnetic effect.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1607403,2021YFA1600201,and 2022YFA1602603)the Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+5 种基金the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)the Youth Innovation Promotion Association of CAS (Grant No.2021117)the Natural Science Foundation of Anhui Province (No.1908085QA15)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.YZJJ2022QN36)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1602602)the National Natural Science Foundation of China(Grant Nos.12122411 and 12474053)+4 种基金CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084)HFIPS Director’s Fund(Grant Nos.2023BR,YZJJ-GGZX-2022-03,and YZJJ202403TS)HFIPS Director’s Fud(Grant No.BJPY2021B05)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures(Grant No.JZHKYPT-2021-08)the High Magnetic Field Laboratory of Anhui Province(Grant No.AHHM-FX2020-02)。
文摘Recent experimental and theoretical work has focused on two-dimensional van der Waals(2D vdW)magnets due to their potential applications in sensing and spintronics devises.In measurements of these emerging materials,conventional magnetometry often encounters challenges in characterizing the magnetic properties of small-sized vdW materials,especially for antiferromagnets with nearly compensated magnetic moments.Here,we investigate the magnetism of 2D antiferromagnet CrPS_(4)with a thickness of 8nm by using dynamic cantilever magnetometry(DCM).
基金supported by the Key R&D Program of Forestry Shandong Province(2021TZXD014)the Science and Technology Innovation Breakthrough Project of Heze Ctiy(2021KJTP10).
文摘Chaenomeles speciosa(Sweet)Nakai cultivated widely in temperate regions possesses anti-inflammatory properties,however,the underlying molecular mechanisms remain not fully understood.In this study,a purified phenolic extract of C.speciosa rich in chlorogenic acid,procyanidin B1 and catechin(determined by HPLC-Q-TOF-MS/MS)exhibited dose-dependent anti-inflammatory effects on lipopolysaccharide(LPS)-treated RAW264.7 macrophages.The extract at 30μg/mL was most potent and enabled most cells in normal morphology under LPS stimulation without causing cytotoxicity.The extract suppressed the levels of nitric oxide(NO),tumor necrosis factor-α(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1β),and the mRNA and protein expressions of nitric oxide synthase(iNOS)and cyclooxygenase-2(COX-2).The mechanisms underlying such anti-inflammatory actions included the regulation of phosphorylation of related proteins to monitor the expressions of inflammatory mediators and genes in the nuclear factor kappa-B(NF-κB)and mitogen-activated protein kinase(MAPK)signaling pathways.Therefore,the phenolic extract from C.speciosa is a desirable anti-inflammatory agent for inflammatory conditions to meet the rising demand for natural and cost-effective therapeutics.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2016YFA0300300 and 2017YFA0303003)the National Natural Science Foundation of China (Grant Nos.12061131005,11834016 and 11888101)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB25000000)the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos.QYZDY-SSW-SLH001)。
文摘The electronic and superconducting properties of Fe_(1-δ)Se single-crystal flakes grown hydrothermally are studied by the transport measurements under zero and high magnetic fields up to 38.5 T.The results contrast sharply with those previously reported for nematically ordered Fe Se by chemical-vapor-transport(CVT)growth.No signature of the electronic nematicity,but an evident metal-to-nonmetal crossover with increasing temperature,is detected in the normal state of the present hydrothermal samples.Interestingly,a higher superconducting critical temperature T_c of 13.2 K is observed compared to a suppressed T_c of 9 K in the presence of the nematicity in the CVT Fe Se.Moreover,the upper critical field in the zero-temperature limit is found to be isotropic with respect to the field direction and to reach a higher value of-42 T,which breaks the Pauli limit by a factor of 1.8.
基金supported by the China National Science and Technology Major Project(Nos.2016ZX05024-002-003,2017ZX05032-001-004)the Foundation of Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education(China University of Geosciences),China(Nos.TPR-2022-11,TPR-2022-24)the Science and Technology Planning Project of Tangshan City,China(Nos.22130213H).
文摘Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical and basin modeling analysis,hydrocarbon generation capacity and process of the Paleocene E_(1)y,E_(1)l and E_(1)m formations were investigated.Results show that E_(1)y and E_(1)l mudstones are high-quality source rocks with Type Ⅱ kerogen,which is dominated by both aquatic organisms and terrestrial higher plants deposited in sub-reduced environment.E_(1)m mudstone interbedded with thin carbonaceous mudstone and coal is poor-quality source rock with Type Ⅲ kerogen,whose organic matter was originated from terrestrial higher plants under oxidized environment.Controlled by burial and maturity histories,E_(1)y and E_(1)l source rocks experienced two hydrocarbon generation stages,which took place in the Late Paleocene and in the Middle to Late Eocene,respectively,and had high hydrocarbon generation capacity with cumulative hydrocarbon volume of 363 and 328 mg/g,respectively.E_(1)m source rock only had one hydrocarbon generation process in the Late Eocene,which had low hydrocarbon generation capacity with cumulative hydrocarbon volume of only 24 mg/g.The future oil-gas exploration in the Jiaojiang sag should focus on hydrocarbon generation center and select targets in the central uplift formed before the Miocene with high-quality traps.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015187)the National Natural Science Foundation of China(Grant Nos.11204338,11704385,and11874359)the “Strategic Priority Research Program(B)” of the Chinese Academy of Sciences(Grant No.XDB04040300)
文摘Recently, 12442 system of Fe-based superconductors has attracted considerable attention owing to its unique double-Fe As-layer structure. A steep increase in the in-plane upper critical field with cooling has been observed near the superconducting transition temperature, Tc, in KCa2Fe4As4F2 single crystals. Herein, we report a high-field investigation on upper critical field of this material over a wide temperature range, and both out-of-plane(H∥c, Hc2c) and in-plane(H∥ab, Hc2ab ) directions have been measured.A sublinear temperature-dependent behavior is observed for the out-of-plane Hc2c , whereas strong convex curvature with cooling is observed for the in-plane Hc2ab . Such behaviors could not be described by the conventional Werthamer-Helfand-Hohenberg(WHH) model. The data analysis based on the WHH model by considering the spin aspects reveals a large Maki parameter α=9,indicating that the in-plane upper critical field is affected by a very strong Pauli paramagnetic effect.