Objective:To explore the mechanism and related active components of Yishen Daluo decoction(YSDLD)in treating multiple sclerosis(MS).Methods:Targets of YSDLD were collected through the TCMSP,Chemistry,and TCMID databas...Objective:To explore the mechanism and related active components of Yishen Daluo decoction(YSDLD)in treating multiple sclerosis(MS).Methods:Targets of YSDLD were collected through the TCMSP,Chemistry,and TCMID databases.The MS targets were collected through OMIM,DrugBank,Gencards,TTD,and Pharmgkb databases.We built“componentetarget”network diagrams and proteineprotein interaction(PPI)diagrams and performed topological analysis.The targets were subjected to GO and KEGG enrichment analysis.Molecular docking verification was conducted on selected targets and molecules.Finally,in vitro experiments were con-ducted.BV2 cells were induced by lipopolysaccharide for model establishment.CCK8 experiment was conducted to explore the effect of YSDLD and RT-qPCR technology was used to explore the expression of key targets.Results:There were 184 active components in YSDLD and 898 targets of its action.There were 940 MS targets,and 215 targets were shared by YSDLD and MS.According to the“componentetarget”diagram,the top five key components included quercetin,kaempferol,beta-sitosterol,stigmasterol,and nar-ingenin.IL-6,IL-1 b,TNF-α,AKT1,and VEGFA were the important targets identified by PPI network to-pology analysis.A total of 564 functions were identified by GO enrichment analysis(P<0.01),mainly involving inflammatory response,hypoxia response,plasma membrane,neuronal cell body,protein phosphatase binding,and cytokine activity.KEGG enrichment analysis enriched 98 pathways(P<.01).YSDLD at the concentration of 20 m g/mL had no effect on BV2 cells.RT-qPCR indicated that YSDLD at the concentrations of 15 m g/mL and 20 m g/mL alleviated LPS-induced inflammatory injury and lowered the content of inflammatory factors(P<0.05).Conclusion:In this paper,the network pharmacology and in vitro experiments were used to explore the potential mechanism of YSDLD in treating MS.The research provides a good basis for the development of YSDLD and drugs for MS in future.展开更多
Objective:To reveal GSDME-executed pyroptosis in cancer cells induced by the Chinese traditional herbal medicine plant Lithospermum erythrorhizon(L.erythrorhizon,Zi Cao)and to investigate the potential mechanism.Metho...Objective:To reveal GSDME-executed pyroptosis in cancer cells induced by the Chinese traditional herbal medicine plant Lithospermum erythrorhizon(L.erythrorhizon,Zi Cao)and to investigate the potential mechanism.Methods:L.erythrorhizon was extracted by ultrasonication in 95%ethanol,and determined using high-performance liquid chromatography(HPLC).He La,A549,SW620,HEK-293 T,THP-1,K562,Raw264.7 and MDA-MB-231 cell lines were used to investigate the morphology and mechanism of pyroptosis induced by L.erythrorhizon.The lactate dehydrogenase(LDH)release,propidium iodide(PI)/Hoechst double-staining,and pyroptosis reconstitution experiments were performed to study L.erythrorhizon-induced cell pyroptosis.Results:Compared with the death inhibitor,PI/Hoechst and LDH release experiments,we found that L.erythrorhizon induced pyroptosis.Recombination and western blot experiments confired that L.erythrorhizon induced GSDME cleavage,which drives pyroptosis.This phenomenon is conserved in several cancer cell lines that might be triggered by caspase family proteases.The mechanism of L.erythrorhizon inducing pyroptosis is widely found in tumor cells.Conclusion:Our findings not only explain how L.erythrorhizon triggers cancer cell pyroptosis,but also provide mechanistic insights to guide its clinical application in the future.展开更多
Objective:To initially explore traditional Chinese medicine patterns in a bleomycin-induced pulmonary fibrosis mouse model.Methods:Thirty-six C57BL/6 mice were divided by the random number table method(with 12 rats pe...Objective:To initially explore traditional Chinese medicine patterns in a bleomycin-induced pulmonary fibrosis mouse model.Methods:Thirty-six C57BL/6 mice were divided by the random number table method(with 12 rats per group)into three groups:a blank group,a model group,and a number 2 Feibi recipe(FBR-2)group.The pulmonary fibrosis mouse model was established by intratracheal instillation of bleomycin.The FBR-2 group was treated with FBR-2 for 4 weeks.Symptoms in the mice such as mental behavior,food/water intake,body weight,body temperature,respiratory rate,and tongue image were observed.The samples were collected on the 14th day and 28th day after modeling,and lung tissues were visually assessed and microscopically evaluated by staining with hematoxylin-eosin and Masson.The expression levels of hydroxyproline,interleukin(IL)-33,IL-37,tissue plasminogen activator,and plasminogen activator inhibitor-1 were determined by enzyme-linked immunosorbent assay.Results:Mice in the model group were poor in spirit,less active,slow in response,showed reduced food/water intake,body temperature,and body weight,increased respiratory rate,and their tongue color had changed from light red to dark red.However,treatment with FBR-2 significantly improved these symptoms.Extensive inflammatory cell infiltration and collagen fiber deposition were observed in the lung tissues of the model group.Compared with the blank group,the levels of hydroxyproline,IL-33,and plasminogen activator inhibitor-1 in the model group significantly increased(all P<.05),whereas that of tissue plasminogen activator significantly decreased on the 14th day and 28th day(P=.036 and P=.005,respectively).Moreover,FBR-2 improved lung inflammation and fibrinolysis imbalance and reduced collagen fiber deposition.Conclusion:To some extent,our bleomycin-induced pulmonary fibrosis mouse model exhibited traditional Chinese medicine patterns of qi deficiency,blood stasis,and heat retention.展开更多
In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process ...In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(81973690 and 81904049)Experimental Technology Standardization Research Project of Beijing University of Chinese Medicine(2021-SYJS-001).
基金This work was supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chi-nese Medicine(ZYYCXTD-C-202006).
文摘Objective:To explore the mechanism and related active components of Yishen Daluo decoction(YSDLD)in treating multiple sclerosis(MS).Methods:Targets of YSDLD were collected through the TCMSP,Chemistry,and TCMID databases.The MS targets were collected through OMIM,DrugBank,Gencards,TTD,and Pharmgkb databases.We built“componentetarget”network diagrams and proteineprotein interaction(PPI)diagrams and performed topological analysis.The targets were subjected to GO and KEGG enrichment analysis.Molecular docking verification was conducted on selected targets and molecules.Finally,in vitro experiments were con-ducted.BV2 cells were induced by lipopolysaccharide for model establishment.CCK8 experiment was conducted to explore the effect of YSDLD and RT-qPCR technology was used to explore the expression of key targets.Results:There were 184 active components in YSDLD and 898 targets of its action.There were 940 MS targets,and 215 targets were shared by YSDLD and MS.According to the“componentetarget”diagram,the top five key components included quercetin,kaempferol,beta-sitosterol,stigmasterol,and nar-ingenin.IL-6,IL-1 b,TNF-α,AKT1,and VEGFA were the important targets identified by PPI network to-pology analysis.A total of 564 functions were identified by GO enrichment analysis(P<0.01),mainly involving inflammatory response,hypoxia response,plasma membrane,neuronal cell body,protein phosphatase binding,and cytokine activity.KEGG enrichment analysis enriched 98 pathways(P<.01).YSDLD at the concentration of 20 m g/mL had no effect on BV2 cells.RT-qPCR indicated that YSDLD at the concentrations of 15 m g/mL and 20 m g/mL alleviated LPS-induced inflammatory injury and lowered the content of inflammatory factors(P<0.05).Conclusion:In this paper,the network pharmacology and in vitro experiments were used to explore the potential mechanism of YSDLD in treating MS.The research provides a good basis for the development of YSDLD and drugs for MS in future.
基金supported by Program for the research startup fund program at Beijing University of Chinese Medicine(90011451310011)the key research fund for drug discovery in Chinese medicine at Beijing University of Chinese Medicine(1000061223740)+1 种基金the experimental technology standardization research project at Beijing University of Chinese Medicine(2021-SYJS-009)the fundamental research funds for the central universities of Beijing University of Chinese Medicine(2020-JYBZDGG-057)。
文摘Objective:To reveal GSDME-executed pyroptosis in cancer cells induced by the Chinese traditional herbal medicine plant Lithospermum erythrorhizon(L.erythrorhizon,Zi Cao)and to investigate the potential mechanism.Methods:L.erythrorhizon was extracted by ultrasonication in 95%ethanol,and determined using high-performance liquid chromatography(HPLC).He La,A549,SW620,HEK-293 T,THP-1,K562,Raw264.7 and MDA-MB-231 cell lines were used to investigate the morphology and mechanism of pyroptosis induced by L.erythrorhizon.The lactate dehydrogenase(LDH)release,propidium iodide(PI)/Hoechst double-staining,and pyroptosis reconstitution experiments were performed to study L.erythrorhizon-induced cell pyroptosis.Results:Compared with the death inhibitor,PI/Hoechst and LDH release experiments,we found that L.erythrorhizon induced pyroptosis.Recombination and western blot experiments confired that L.erythrorhizon induced GSDME cleavage,which drives pyroptosis.This phenomenon is conserved in several cancer cell lines that might be triggered by caspase family proteases.The mechanism of L.erythrorhizon inducing pyroptosis is widely found in tumor cells.Conclusion:Our findings not only explain how L.erythrorhizon triggers cancer cell pyroptosis,but also provide mechanistic insights to guide its clinical application in the future.
基金This work was supported by Natural Science Foundation of Beijing Municipality(7202118).
文摘Objective:To initially explore traditional Chinese medicine patterns in a bleomycin-induced pulmonary fibrosis mouse model.Methods:Thirty-six C57BL/6 mice were divided by the random number table method(with 12 rats per group)into three groups:a blank group,a model group,and a number 2 Feibi recipe(FBR-2)group.The pulmonary fibrosis mouse model was established by intratracheal instillation of bleomycin.The FBR-2 group was treated with FBR-2 for 4 weeks.Symptoms in the mice such as mental behavior,food/water intake,body weight,body temperature,respiratory rate,and tongue image were observed.The samples were collected on the 14th day and 28th day after modeling,and lung tissues were visually assessed and microscopically evaluated by staining with hematoxylin-eosin and Masson.The expression levels of hydroxyproline,interleukin(IL)-33,IL-37,tissue plasminogen activator,and plasminogen activator inhibitor-1 were determined by enzyme-linked immunosorbent assay.Results:Mice in the model group were poor in spirit,less active,slow in response,showed reduced food/water intake,body temperature,and body weight,increased respiratory rate,and their tongue color had changed from light red to dark red.However,treatment with FBR-2 significantly improved these symptoms.Extensive inflammatory cell infiltration and collagen fiber deposition were observed in the lung tissues of the model group.Compared with the blank group,the levels of hydroxyproline,IL-33,and plasminogen activator inhibitor-1 in the model group significantly increased(all P<.05),whereas that of tissue plasminogen activator significantly decreased on the 14th day and 28th day(P=.036 and P=.005,respectively).Moreover,FBR-2 improved lung inflammation and fibrinolysis imbalance and reduced collagen fiber deposition.Conclusion:To some extent,our bleomycin-induced pulmonary fibrosis mouse model exhibited traditional Chinese medicine patterns of qi deficiency,blood stasis,and heat retention.
文摘In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm.