We systematically study the optimization of highly efficient terahertz(THz) generation in lithium niobate(LN)crystal pumped by 800 nm laser pulses with 30 fs pulse duration. At room temperature, we obtain a record...We systematically study the optimization of highly efficient terahertz(THz) generation in lithium niobate(LN)crystal pumped by 800 nm laser pulses with 30 fs pulse duration. At room temperature, we obtain a record optical-to-THz energy conversion efficiency of 0.43% by chirping the pump laser pulses. Our method provides a new technique for producing millijoule THz radiation in LN via optical rectification driven by joule-level Ti:sapphire laser systems, which deliver sub-50-fs pulse durations.展开更多
基金supported by the National Basic Research Program of China(No.2013CBA01501)the National Natural Science Foundation of China(No.11520101003)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB16010200 and XDB07030300)the "Zhuoyue" Program of Beihang University(No.GZ216S1711)
文摘We systematically study the optimization of highly efficient terahertz(THz) generation in lithium niobate(LN)crystal pumped by 800 nm laser pulses with 30 fs pulse duration. At room temperature, we obtain a record optical-to-THz energy conversion efficiency of 0.43% by chirping the pump laser pulses. Our method provides a new technique for producing millijoule THz radiation in LN via optical rectification driven by joule-level Ti:sapphire laser systems, which deliver sub-50-fs pulse durations.