While carbon dioxide(CO_(2))is a major greenhouse gas,it is also an important C1 resource.In the trend of energy conservation and emission reduction,electrocatalytic reduction has become a very promising strategy for ...While carbon dioxide(CO_(2))is a major greenhouse gas,it is also an important C1 resource.In the trend of energy conservation and emission reduction,electrocatalytic reduction has become a very promising strategy for CO_(2)utilization because it can convert CO_(2)directly to high-valued chemicals and fuels under mild conditions.In particular,the product CO and by-product H_(2)can be combined into syngas by an electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in an aqueous medium.Different molar ratios of CO and H_(2)may be used to produce essential bulk chemicals or liquid fuels such as methanol,alkanes,and olefins through thermochemical catalysis,Fischer-Tropsch synthesis,microbial fermentation,and other techniques.This work discusses the latest strategies in controlling the molar ratio of CO/H_(2)and improving the yield of CO_(2)RR-to-syngas.The challenges of electrocatalytic syngas production are analyzed from an industrial application perspective,and the possible measures to overcome them are proposed in terms of new catalyst design,electrolyte innovation,flow reactor optimization,anodic reaction coupling,and operando technique application.展开更多
基金the financial support from the National Natural Science Foundation of China(22233006,22273018)the Project of Henan International Joint Laboratory of Green Chemistrythe 111 Project(D17007)。
文摘While carbon dioxide(CO_(2))is a major greenhouse gas,it is also an important C1 resource.In the trend of energy conservation and emission reduction,electrocatalytic reduction has become a very promising strategy for CO_(2)utilization because it can convert CO_(2)directly to high-valued chemicals and fuels under mild conditions.In particular,the product CO and by-product H_(2)can be combined into syngas by an electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in an aqueous medium.Different molar ratios of CO and H_(2)may be used to produce essential bulk chemicals or liquid fuels such as methanol,alkanes,and olefins through thermochemical catalysis,Fischer-Tropsch synthesis,microbial fermentation,and other techniques.This work discusses the latest strategies in controlling the molar ratio of CO/H_(2)and improving the yield of CO_(2)RR-to-syngas.The challenges of electrocatalytic syngas production are analyzed from an industrial application perspective,and the possible measures to overcome them are proposed in terms of new catalyst design,electrolyte innovation,flow reactor optimization,anodic reaction coupling,and operando technique application.