The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of ...The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of DSR derived from satellite and reanalysis has not been systematically evaluated over the transect of Zhongshan station to Dome A, East Antarctica.Therefore, this study aims to evaluate DSR reanalysis products(ERA5-Land, ERA5, MERRA-2) and satellite products(CERES and ICDR) in this area. The results indicate that DSR exhibits obvious monthly and seasonal variations, with higher values in summer than in winter. The ERA5-Land(ICDR) DSR product demonstrated the highest(lowest) accuracy,as evidenced by a correlation coefficient of 0.988(0.918), a root-mean-square error of 23.919(69.383) W m^(–2), a mean bias of –1.667(–28.223) W m^(–2) and a mean absolute error of 13.37(58.99) W m^(–2). The RMSE values for the ERA5-Land reanalysis product at seven stations, namely Zhongshan, Panda 100, Panda 300, Panda 400, Taishan, Panda 1100, and Kunlun, were 30.938, 29.447, 34.507, 29.110, 20.339, 17.267, and 14.700 W m^(-2), respectively;with corresponding bias values of 9.887, –12.159, –19.181, –15.519, –8.118, 6.297, and 3.482 W m^(–2). Regarding seasonality, ERA5-Land, ERA5,and MERRA-2 reanalysis products demonstrate higher accuracies during spring and summer, while ICDR products are least accurate in autumn. Cloud cover, water vapor, total ozone, and severe weather are the main factors affecting DSR. The error of DSR products is greatest in coastal areas(particularly at the Zhongshan station) and decreases towards the inland areas of Antarctica.展开更多
Long-term,ground-based daily global solar radiation (DGSR) at Zhongshan Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s surface radiation balance and validate satellite data for t...Long-term,ground-based daily global solar radiation (DGSR) at Zhongshan Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s surface radiation balance and validate satellite data for the Antarctic region.The fixed station was established in 1989,and conventional radiation observations started much later in 2008.In this study,a random forest (RF) model for estimating DGSR is developed using ground meteorological observation data,and a highprecision,long-term DGSR dataset is constructed.Then,the trend of DGSR from 1990 to 2019 at Zhongshan Station,Antarctica is analyzed.The RF model,which performs better than other models,shows a desirable performance of DGSR hindcast estimation with an R^2 of 0.984,root-mean-square error of 1.377 MJ m^(-2),and mean absolute error of 0.828 MJ m^(-2).The trend of DGSR annual anomalies increases during 1990–2004 and then begins to decrease after 2004.Note that the maximum value of annual anomalies occurs during approximately 2004/05 and is mainly related to the days with precipitation (especially those related to good weather during the polar day period) at this station.In addition to clouds and water vapor,bad weather conditions (such as snowfall,which can result in low visibility and then decreased sunshine duration and solar radiation) are the other major factors affecting solar radiation at this station.The high-precision,longterm estimated DGSR dataset enables further study and understanding of the role of Antarctica in global climate change and the interactions between snow,ice,and atmosphere.展开更多
The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aeroso...The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aerosols from the eruption broke through the tropopause into the lower stratosphere,forming an ash plume with an overshooting top at 25-30 km altitude.In the four days following the eruption,the ash plume moved rapidly westward for nearly 10,000 km under stable stratospheric conditions characterized by strong tropical easterlies,weak meridional winds and weak vertical motion.The intrusion of the ash plume into the stratosphere resulted in a marked increase in atmospheric aerosol loading across northern Australia,with the aerosol optical depth(AOD)observed by satellites and sun-photometers peaking at 1.5 off the coast of northeastern Australia;these effects lasted for nearly three days.The ash plume was characterized by fine-mode particles clustered at a radius of about 0.26μm,with an observed peak volume of 0.25μm^(3)μm^(-2).The impact of the ash plume associated with the Hunga Tonga eruption on the stratospheric AOD and radiative balance in the tropical southern hemisphere is remarkable,with an observed volcanic-induced perturbation of the regional stratospheric AOD of up to 0.6.This perturbation largely explains an instantaneous bottom(top)of the atmosphere radiative forcing of-105.0(-65.0)W m^(-2)on a regional scale.展开更多
基金supported by the National Natural Science Foundation of China (Grants Nos.42122047 and 42306270)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant Nos.2021Z006 and 2023Z013)。
文摘The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of DSR derived from satellite and reanalysis has not been systematically evaluated over the transect of Zhongshan station to Dome A, East Antarctica.Therefore, this study aims to evaluate DSR reanalysis products(ERA5-Land, ERA5, MERRA-2) and satellite products(CERES and ICDR) in this area. The results indicate that DSR exhibits obvious monthly and seasonal variations, with higher values in summer than in winter. The ERA5-Land(ICDR) DSR product demonstrated the highest(lowest) accuracy,as evidenced by a correlation coefficient of 0.988(0.918), a root-mean-square error of 23.919(69.383) W m^(–2), a mean bias of –1.667(–28.223) W m^(–2) and a mean absolute error of 13.37(58.99) W m^(–2). The RMSE values for the ERA5-Land reanalysis product at seven stations, namely Zhongshan, Panda 100, Panda 300, Panda 400, Taishan, Panda 1100, and Kunlun, were 30.938, 29.447, 34.507, 29.110, 20.339, 17.267, and 14.700 W m^(-2), respectively;with corresponding bias values of 9.887, –12.159, –19.181, –15.519, –8.118, 6.297, and 3.482 W m^(–2). Regarding seasonality, ERA5-Land, ERA5,and MERRA-2 reanalysis products demonstrate higher accuracies during spring and summer, while ICDR products are least accurate in autumn. Cloud cover, water vapor, total ozone, and severe weather are the main factors affecting DSR. The error of DSR products is greatest in coastal areas(particularly at the Zhongshan station) and decreases towards the inland areas of Antarctica.
基金supported by the National Natural Science Foundation of China (Grant Nos.41941010,41771064 and 41776195)the National Basic Research Program of China (Grant No.2016YFC1400303)the Basic Fund of the Chinese Academy of Meteorological Sciences (Grant No.2018Z001)。
文摘Long-term,ground-based daily global solar radiation (DGSR) at Zhongshan Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s surface radiation balance and validate satellite data for the Antarctic region.The fixed station was established in 1989,and conventional radiation observations started much later in 2008.In this study,a random forest (RF) model for estimating DGSR is developed using ground meteorological observation data,and a highprecision,long-term DGSR dataset is constructed.Then,the trend of DGSR from 1990 to 2019 at Zhongshan Station,Antarctica is analyzed.The RF model,which performs better than other models,shows a desirable performance of DGSR hindcast estimation with an R^2 of 0.984,root-mean-square error of 1.377 MJ m^(-2),and mean absolute error of 0.828 MJ m^(-2).The trend of DGSR annual anomalies increases during 1990–2004 and then begins to decrease after 2004.Note that the maximum value of annual anomalies occurs during approximately 2004/05 and is mainly related to the days with precipitation (especially those related to good weather during the polar day period) at this station.In addition to clouds and water vapor,bad weather conditions (such as snowfall,which can result in low visibility and then decreased sunshine duration and solar radiation) are the other major factors affecting solar radiation at this station.The high-precision,longterm estimated DGSR dataset enables further study and understanding of the role of Antarctica in global climate change and the interactions between snow,ice,and atmosphere.
基金supported by the National Science Fund for Distinguished Young Scholars(41825011)the National Natural Science Foundation of China(42175153 and 42030608)the Basic Research Fund of Chinese Academy of Meteorological Sciences(2021Y001)。
文摘The Hunga Tonga-Hunga Ha’apai eruption on January 15,2022 was one of the most explosive volcanic eruptions of the 21st century and has attracted global attention.Here we show that large numbers of the volcanic aerosols from the eruption broke through the tropopause into the lower stratosphere,forming an ash plume with an overshooting top at 25-30 km altitude.In the four days following the eruption,the ash plume moved rapidly westward for nearly 10,000 km under stable stratospheric conditions characterized by strong tropical easterlies,weak meridional winds and weak vertical motion.The intrusion of the ash plume into the stratosphere resulted in a marked increase in atmospheric aerosol loading across northern Australia,with the aerosol optical depth(AOD)observed by satellites and sun-photometers peaking at 1.5 off the coast of northeastern Australia;these effects lasted for nearly three days.The ash plume was characterized by fine-mode particles clustered at a radius of about 0.26μm,with an observed peak volume of 0.25μm^(3)μm^(-2).The impact of the ash plume associated with the Hunga Tonga eruption on the stratospheric AOD and radiative balance in the tropical southern hemisphere is remarkable,with an observed volcanic-induced perturbation of the regional stratospheric AOD of up to 0.6.This perturbation largely explains an instantaneous bottom(top)of the atmosphere radiative forcing of-105.0(-65.0)W m^(-2)on a regional scale.