Lithium-sulfur batteries(LSBs)have become promising next-generation energy storage technologies for electric vehicles and portable electronics,due to its excellent theoretical specific energy.However,the low conductiv...Lithium-sulfur batteries(LSBs)have become promising next-generation energy storage technologies for electric vehicles and portable electronics,due to its excellent theoretical specific energy.However,the low conductivity of sulfur species,notorious lithium dendrites,the severe"shuttle effect"of polysulfides(LiPSs)and the inferior kinetic reaction for LiPSs/Li_(2)S conversion during discharge-charge have seriously hindered their practical application,and also pose potential safety hazards.Owing to their superior porous architectures,high specific surface areas,excellent structural designability,functional modifiability,abundant active sites and flexibility of carbon-containing electrospun nanofibers(CENFs),they exhibited the superior characteristics that can simultaneously solve the above issues.In this review,we summarize the recent progress and application of CENFs in LSBs.First,we provide a brief introduction to the structure and composition controlled of carbon nanofibers by electrospinning.We then review progress in recent developments of CENFs for LSBs including cathodes,anodes,separators,and interlayers.We focus on how to solve practical issues that arise when the CENFs are applied to various parts of LSBs,and the relevant working mechanisms are described,from high sulfur loading and Li dendrites suppression to LiPSs’confinement and conversion.Finally,we summarize and propose the existing challenges and future prospects of CENFs,for the design and architecture of electrochemical components in Li-S energy storage systems.展开更多
In this paper,sulfur doped g-C_(3)N_(4)(S-g-C_(3)N_(4))was successfully prepared at 500℃ for 3 h via a modified molten salt method using dicyandiamide as the main raw material,trithiocyanuric acid as the sulfur sourc...In this paper,sulfur doped g-C_(3)N_(4)(S-g-C_(3)N_(4))was successfully prepared at 500℃ for 3 h via a modified molten salt method using dicyandiamide as the main raw material,trithiocyanuric acid as the sulfur source and LiBreKCl as the reaction medium.The as-prepared SeCN5.0% sample(the mass ratio of trithiocyanuric acid to dicyandiamide was 5.0%)composed of irregular flakes showed a band gap of 1.83 eV,which was narrower than that(2.55 eV)of pristine g-C_(3)N_(4).The SeCN5.0% sample also exhibited an outstanding absorption capacity of visible light.Moreover,the photodegradation rate toward methylene blue and tetracycline were respectively 10 and 20 times as high as that of bulk g-C_(3)N_(4) prepared by conventional heating methods,confirming its superior photocatalytic performance.These results can be attributed to that the replacement of lattice nitrogen with sulfur atom tuned the electronic structure of g-C_(3)N_(4),improved the absorption of visible light,optimized the separation of photogenerated electron-hole pairs,and consequently enhanced the photocatalytic activity of g-C_(3)N_(4).Moreover,the trapping experiments implied that hole(ht)and superoxide radical($O2)were the main active species in the process of photodegradation.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51702241)Key Program of Natural Science Foundation of Hubei Province(Contract No.2017CFA004)+1 种基金the Special Project of Central Government for Local Science and Technology Development of Hubei Province(No.2019ZYYD076)Open Foundation of State Key Laboratory of Advanced Refractories(No.SKLAR202002)。
文摘Lithium-sulfur batteries(LSBs)have become promising next-generation energy storage technologies for electric vehicles and portable electronics,due to its excellent theoretical specific energy.However,the low conductivity of sulfur species,notorious lithium dendrites,the severe"shuttle effect"of polysulfides(LiPSs)and the inferior kinetic reaction for LiPSs/Li_(2)S conversion during discharge-charge have seriously hindered their practical application,and also pose potential safety hazards.Owing to their superior porous architectures,high specific surface areas,excellent structural designability,functional modifiability,abundant active sites and flexibility of carbon-containing electrospun nanofibers(CENFs),they exhibited the superior characteristics that can simultaneously solve the above issues.In this review,we summarize the recent progress and application of CENFs in LSBs.First,we provide a brief introduction to the structure and composition controlled of carbon nanofibers by electrospinning.We then review progress in recent developments of CENFs for LSBs including cathodes,anodes,separators,and interlayers.We focus on how to solve practical issues that arise when the CENFs are applied to various parts of LSBs,and the relevant working mechanisms are described,from high sulfur loading and Li dendrites suppression to LiPSs’confinement and conversion.Finally,we summarize and propose the existing challenges and future prospects of CENFs,for the design and architecture of electrochemical components in Li-S energy storage systems.
基金This workwas financially supported by National Natural Science Foundation of China(Grant No.51872210 and 52072274)Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(T201602)Key Program of Natural Science Foundation of Hubei Province,China(Grant/Award Number:2017CFA004).
文摘In this paper,sulfur doped g-C_(3)N_(4)(S-g-C_(3)N_(4))was successfully prepared at 500℃ for 3 h via a modified molten salt method using dicyandiamide as the main raw material,trithiocyanuric acid as the sulfur source and LiBreKCl as the reaction medium.The as-prepared SeCN5.0% sample(the mass ratio of trithiocyanuric acid to dicyandiamide was 5.0%)composed of irregular flakes showed a band gap of 1.83 eV,which was narrower than that(2.55 eV)of pristine g-C_(3)N_(4).The SeCN5.0% sample also exhibited an outstanding absorption capacity of visible light.Moreover,the photodegradation rate toward methylene blue and tetracycline were respectively 10 and 20 times as high as that of bulk g-C_(3)N_(4) prepared by conventional heating methods,confirming its superior photocatalytic performance.These results can be attributed to that the replacement of lattice nitrogen with sulfur atom tuned the electronic structure of g-C_(3)N_(4),improved the absorption of visible light,optimized the separation of photogenerated electron-hole pairs,and consequently enhanced the photocatalytic activity of g-C_(3)N_(4).Moreover,the trapping experiments implied that hole(ht)and superoxide radical($O2)were the main active species in the process of photodegradation.