期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Benefits and limitations of biochar for climate-smart agriculture:a review and case study from China 被引量:2
1
作者 Xiaomeng Bo Zhiwei Zhang +7 位作者 Jinyang Wang Shumin Guo Zhutao Li Haiyan Lin Yawen Huang zhaoqiang han Yakov Kuzyakov Jianwen Zou 《Biochar》 SCIE CAS CSCD 2023年第1期1319-1342,共24页
Biochar has gained significant attention in agricultural and environmental research over the last two decades.This comprehensive review evaluates the effects of biochar on soil organic carbon(SOC),emission of non-CO_(... Biochar has gained significant attention in agricultural and environmental research over the last two decades.This comprehensive review evaluates the effects of biochar on soil organic carbon(SOC),emission of non-CO_(2) greenhouse gases,and crop yield,including related mechanisms and major influencing factors.The impacts of biochar on SOC,methane and nitrous oxide emissions,and crop yield are controlled by biochar and soil properties and management practices.High-temperature biochar produced from lignin-rich feedstocks may decrease methane and nitrous oxide emissions in acidic soils and strengthen long-term carbon sequestration due to its stable aromatic structure.In contrast,low-temperature biochar from manure may increase crop yield in low-fertility soils.Applying biochar to farmlands in China can increase SOC content by 1.9 Pg C and reduce methane and nitrous oxide emissions by 25 and 20 Mt CO_(2)-eq year^(−1),respectively,while increasing crop yields by 19%.Despite the increasing evidence of the positive effects of biochar,future research needs to explore the potential factors that could weaken or hinder its capacity to address climate change and secure crop production.We conclude that biochar is not a universal solution for global cropland;however,targeted applications in fields,landscapes,or regional scales,especially in low fertility and sandy soils,could realize the benefits of biochar as a climate-smart measure. 展开更多
关键词 BIOCHAR Carbon sequestration Greenhouse gas Food security Mitigation potential
原文传递
Divergent effects of biochar amendment and replacing mineral fertilizer with manure on soil respiration in a subtropical tea plantation 被引量:1
2
作者 zhaoqiang han Pinshang Xu +6 位作者 Zhutao Li Shumin Guo Shuqing Li Shuwei Liu Shuang Wu Jinyang Wang Jianwen Zou 《Biochar》 SCIE CAS CSCD 2023年第1期1259-1272,共14页
Applying biochar amendment and manure in tea plantation ecosystems can diminish soil acidification and degradation.However,the impact of these practices on soil respiration and associated mechanisms remains unclear.In... Applying biochar amendment and manure in tea plantation ecosystems can diminish soil acidification and degradation.However,the impact of these practices on soil respiration and associated mechanisms remains unclear.In this study,we combined a two-year field experiment and laboratory analyses based on soil properties,functional genes,and microbial co-occurrence networks to explore the determinants of soil respiration intensity in a subtropical tea plantation with biochar amendment and manure application.The results showed that the effect of biochar amendment on soil respiration was unconspicuous.Although biochar amendment increased bacterial richness and Shannon index,biochar amendment did not alter the abundance of species associated with C-cycling functional genes.Besides directly adding recalcitrant C to the soil,biochar also indirectly enhanced C sequestration by weakly increasing soil carbon dioxide(CO_(2))emissions.However,replacing mineral fertilizer with manure significantly stimulated soil respiration in the tea plantation,resulting in a 36%increase in CO_(2) emissions over two years.The increase in CO_(2) emissions under the manure treatment was mainly attributed to the increased soil labile C pool,the activity of hydrolytic enzymes(e.g.,cellobiohydrolase and acetylglucosaminidase),and the relative abundance of functional genes associated with the C-cycle.This may also be related to the application of manure that increased the abundance of Gemmatimonadetes and altered ecological clusters in bacterial co-occurrence networks.Our correlation network analysis suggested that Gemmatimonadetes might be the potential hosts for C-cycling genes due to their strong positive correlation with the abundance of C-cycling genes.Overall,these findings provide new insights into soil respiration under biochar amendment and manure application in tea plantations and broaden the options for carbon sequestration in soils. 展开更多
关键词 C dynamics BIOCHAR SOC chemical composition C-cycle genes Microbial community
原文传递
GASEOUS REACTIVE NITROGEN LOSSES FROM ORCHARDS,VEGETABLES AND TEA PLANTATIONS
3
作者 Jinyang WANG Pinshang XU +3 位作者 Haiyan LIN Shumin GUO zhaoqiang han Jianwen ZOU 《Frontiers of Agricultural Science and Engineering》 CSCD 2023年第2期155-166,共12页
Nitrogen fertilizer application has accelerated the agricultural soil N cycle while ensuring food security.Gaseous reactive N emissions from orchards,vegetables and tea plantations(OVT)are less understood than those f... Nitrogen fertilizer application has accelerated the agricultural soil N cycle while ensuring food security.Gaseous reactive N emissions from orchards,vegetables and tea plantations(OVT)are less understood than those from cereal crops.This paper presents a compilation of data on soil ammonia,nitrous oxide,and nitric oxide emissions from 1454 OVT systems at 184 unique experimental locations worldwide aiming to investigate their emission characteristics,emission factors(EF),and contribution to total farmland emissions.NH_(3)and N_(2)O emissions from orchards and N_(2)O and NO emissions from vegetable production were significantly higher in China than in the rest of the world,regardless of fertilizer application,while N_(2)O emissions from tea plantations were lower than for vegetables.The EF of NH_(3)for vegetables was close to the global mean value with urea application but significantly higher than that of orchards.The EF of N_(2)O in orchards and vegetables was comparable to the global median value,while in tea plantations,the value was 2.3 times higher than the global median value.Current estimates suggest that direct emissions of NH_(3),N_(2)O,and NO from OVT systems are equivalent to approximately a quarter,two thirds and a half of the total farmland in China,respectively.Future research needs to strengthen observational field studies in establishing standard sampling methods for gaseous N emissions and implementing knowledge-based management measures to help achieve the green development of agriculture. 展开更多
关键词 FRUIT greenhouse gas green development fertilizer management climate change
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部