A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia....A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.展开更多
Titanium suboxide is an excellent electrode material for many oxidization reactions.In this article,the electrodes of pure Ti_4O_7,doped Ti_4O_7and the mixed-crystal of Ti_4O_7and Ti_5O_9were prepared to evaluate thei...Titanium suboxide is an excellent electrode material for many oxidization reactions.In this article,the electrodes of pure Ti_4O_7,doped Ti_4O_7and the mixed-crystal of Ti_4O_7and Ti_5O_9were prepared to evaluate their activities and doping effects in the electro-degradation of phenol.It was revealed by the HPLC analysis results that the degradation intermediates and routes were significantly affected by the doping element.On the pure Ti_4O_7anode,a series of classic intermediates were obtained from benzoquinone and hydroquinone to various carboxylic acids.These intermediates were degraded gradually to the final organic intermediate of oxalate in all experiments.At last,oxalate was oxidized to CO_2and H_2O.Distinctively,the Y-doped Ti_4O_7 anode directly broke phenol toα-ketoglutaric acid without the intermediates of benzoquinone and hydroquinone.The strong oxidization ability of the Y-doped Ti_4O_7 anode might be responsible for the highest COD removal ratio.In contrast,the Ga-doped Ti_4O_7 anode showed the worst degradation activity in this article.Three intermediates of benzoquinone,hydroquinone and maleic acid were found during the degradation.Benefiting from the weak ability,oxalate was efficiently accumulated with a very high yield of 74.6%.The results demonstrated promising applications from electrochemical preparation to wastewater degradation by adjusting the doping reagent of Ti_4O_7 electrodes.展开更多
随着我国不锈钢粗钢产量逐年增大,对不锈钢进行酸洗而产生的酸洗废酸也在逐年增多。不锈钢酸洗排放的废硫酸溶液中含大量游离酸,根据本课题组开发的酸再生循环工艺,在有效回收废酸中有价金属离子的同时,使酸洗废酸中游离酸浓度增大得到...随着我国不锈钢粗钢产量逐年增大,对不锈钢进行酸洗而产生的酸洗废酸也在逐年增多。不锈钢酸洗排放的废硫酸溶液中含大量游离酸,根据本课题组开发的酸再生循环工艺,在有效回收废酸中有价金属离子的同时,使酸洗废酸中游离酸浓度增大得到再生硫酸。针对不锈钢酸洗废液中再生硫酸浓度较高、中和处理试剂消耗高、废渣产生量大的问题,研究了溶剂萃取法回收不锈钢酸洗废液中硫酸的工艺。研究发现,有机体系40%(体积分数)三(2-乙基己基)胺(TEHA)+50%异构十三醇+10%Exxsol D110为最优化组成,硫酸萃取率随TEHA浓度增加而升高,随温度升高萃取率降低,表明萃取反应为放热反应,计算所得萃取反应的ΔH=-7.5708 k J/mol。根据萃取和反萃分配曲线分别绘制了McCabe-Thiele图,在30℃、相比A/O=1:2条件下,经过3级(理论)萃取,硫酸的萃取率可达79.8%以上;采用水作反萃剂,在30℃、相比A/O=1:1条件下,经过3级(理论)反萃,硫酸的反萃率可达85.5%。萃取、反萃动力学快,分相迅速,可满足工业连续生产要求。展开更多
文摘A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.
基金Supported by the Key Research Program of Frontier Sciences of CAS(No.QYZDJSSW-JSC021)the Science and Technology Cooperation for Yunnan Province and CAS(No.2016IB002)+1 种基金Science and Technology Service Network Initiative of CAS(No.KFJ-SWSTS-148)the National Natural Science Foundation of China(Nos.21506233,51402303,21606241,51374191)
文摘Titanium suboxide is an excellent electrode material for many oxidization reactions.In this article,the electrodes of pure Ti_4O_7,doped Ti_4O_7and the mixed-crystal of Ti_4O_7and Ti_5O_9were prepared to evaluate their activities and doping effects in the electro-degradation of phenol.It was revealed by the HPLC analysis results that the degradation intermediates and routes were significantly affected by the doping element.On the pure Ti_4O_7anode,a series of classic intermediates were obtained from benzoquinone and hydroquinone to various carboxylic acids.These intermediates were degraded gradually to the final organic intermediate of oxalate in all experiments.At last,oxalate was oxidized to CO_2and H_2O.Distinctively,the Y-doped Ti_4O_7 anode directly broke phenol toα-ketoglutaric acid without the intermediates of benzoquinone and hydroquinone.The strong oxidization ability of the Y-doped Ti_4O_7 anode might be responsible for the highest COD removal ratio.In contrast,the Ga-doped Ti_4O_7 anode showed the worst degradation activity in this article.Three intermediates of benzoquinone,hydroquinone and maleic acid were found during the degradation.Benefiting from the weak ability,oxalate was efficiently accumulated with a very high yield of 74.6%.The results demonstrated promising applications from electrochemical preparation to wastewater degradation by adjusting the doping reagent of Ti_4O_7 electrodes.
文摘随着我国不锈钢粗钢产量逐年增大,对不锈钢进行酸洗而产生的酸洗废酸也在逐年增多。不锈钢酸洗排放的废硫酸溶液中含大量游离酸,根据本课题组开发的酸再生循环工艺,在有效回收废酸中有价金属离子的同时,使酸洗废酸中游离酸浓度增大得到再生硫酸。针对不锈钢酸洗废液中再生硫酸浓度较高、中和处理试剂消耗高、废渣产生量大的问题,研究了溶剂萃取法回收不锈钢酸洗废液中硫酸的工艺。研究发现,有机体系40%(体积分数)三(2-乙基己基)胺(TEHA)+50%异构十三醇+10%Exxsol D110为最优化组成,硫酸萃取率随TEHA浓度增加而升高,随温度升高萃取率降低,表明萃取反应为放热反应,计算所得萃取反应的ΔH=-7.5708 k J/mol。根据萃取和反萃分配曲线分别绘制了McCabe-Thiele图,在30℃、相比A/O=1:2条件下,经过3级(理论)萃取,硫酸的萃取率可达79.8%以上;采用水作反萃剂,在30℃、相比A/O=1:1条件下,经过3级(理论)反萃,硫酸的反萃率可达85.5%。萃取、反萃动力学快,分相迅速,可满足工业连续生产要求。