期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Room-temperature conversion of ethane and the mechanism understanding over single iron atoms confined in graphene 被引量:1
1
作者 Suheng Wang Haobo Li +8 位作者 Mengqi He Xiaoju Cui Lei Hua Haiyang Li Jianping Xiao Liang Yu N.Pethan Rajan zhaoxiong xie Dehui Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第9期47-50,共4页
The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources.However, it is a great challenge due to the typically required high temperature(>... The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources.However, it is a great challenge due to the typically required high temperature(> 400 ℃) conditions.Herein, a highly active catalytic conversion process of ethane at room temperature(25 ℃) is reported on single iron atoms confined in graphene via the porphyrin-like N4-coordination structures.Combining with the operando time of flight mass spectrometer and density functional theory calculations, the reaction is identified as a radical mechanism, in which the C–H bonds of the same C atom are preferentially and sequentially activated, generating the value-added C2 chemicals, simultaneously avoiding the over-oxidation of the products to CO2.The in-situ formed O–FeN4–O structure at the single iron atom serves as the active center for the reaction and facilitates the formation of ethyl radicals.This work deepens the understanding of alkane C–H activation on the FeN4 center and provides the reference in development of efficient catalyst for selective oxidation of light alkane. 展开更多
关键词 ETHANE CONVERSION C–H activation GRAPHENE Single IRON atom Room-temperature reaction
下载PDF
Advances in microwave absorbing materials with broad-bandwidth response 被引量:1
2
作者 Susu Bao Meixi Zhang +2 位作者 Zhiyuan Jiang zhaoxiong xie Lansun Zheng 《Nano Research》 SCIE EI CSCD 2023年第8期11054-11083,共30页
Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-band... Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-bandwidth response are particularly important in the area of communication security,radiation prevention,electronic reliability,and military stealth.Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response,a number of challenges still remain,and the structure–function relationship of MAMs is still far from being completely understood.Herein,the advances in the design and research of MAMs with a broad-bandwidth response are outlined.The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives:the chemical combination strategy,morphological control strategy,and macrostructure control strategy.Several important results as well as design principles and absorption mechanisms are highlighted.A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided.The main challenges,new opportunities,and future perspectives in this promising field are also presented. 展开更多
关键词 microwave absorbing materials broad-bandwidth response magnetic-dielectric synergy morphology control macrostructure control
原文传递
A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules
3
作者 Meixi Zhang Laisen Wang +5 位作者 Susu Bao Zhijia Song Wenjiao Chen Zhiyuan Jiang zhaoxiong xie Lansun Zheng 《Nano Research》 SCIE EI CSCD 2023年第8期11084-11095,共12页
Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability.However,the oxidation susceptibility of metallic iron particles in the atmospheric environmen... Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability.However,the oxidation susceptibility of metallic iron particles in the atmospheric environment is regarded as a major factor causing performance degradation.Although many efforts have been developed to avoid their oxidation,whether partial surface oxidized iron particles can improve the microwave absorbing performance is rarely concerned.In order to explore the effect of partial surface oxidation of iron on its properties,the designed yolk–shelled(Fe/FeO_(x))@C composites with multiple heterointerfaces were synthesized via an in-situ polymerization and a finite reduction–oxidation process of Fe_(2)O_(3)ellipsoids.The performance enhancement mechanisms of Fe/FeO_(x)heterointerfaces were also elaborated.It is demonstrated that the introduction of Fe-based heterogeneous interfaces can not only enhance the dielectric loss,but also increase the imaginary part of the permeability in the higher frequency range to strengthen the magnetic loss ability.Meanwhile,the yolk–shell structure can effectively improve impedance matching and enhance microwave absorption performances via increasing multiple reflection and scattering behaviors of incident microwaves.Compared to Fe@C composite,the effective absorption(reflection loss(RL)<−10 dB)bandwidth of the optimized(Fe/FeO_(x))@C-2 increases from 5.7 to 7.3 GHz(10.7–18.0 GHz)at a same matching thickness of 2 mm,which can completely cover Ku-band.This work offers a good perspective for the enhancement of magnetic loss ability and microwave absorption performance of Fe-based microwave absorption materials with promising practical applications. 展开更多
关键词 heterogeneous interfaces finite oxidation yolk-shell structure magnetic loss interface polarization microwave absorption
原文传递
Synthesis of Pd Nanocrystals Enclosed by {100} Facets and with Sizes 〈10 nm for Application in CO Oxidation 被引量:24
4
作者 Mingshang Jin Hongyang Liu +3 位作者 Hui Zhang zhaoxiong xie Jingyue Liu Younan Xia 《Nano Research》 SCIE EI CAS CSCD 2011年第1期83-91,共9页
关键词 纳米晶体 晶粒尺寸 氧化钯 CO 合成 纳米催化剂 应用 紫外可见光谱
原文传递
One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection 被引量:3
5
作者 Xiqing Cheng Jinhong Zhou +3 位作者 Jiayu Chen zhaoxiong xie Qin Kuang Lansun Zheng 《Nano Research》 SCIE EI CAS CSCD 2019年第12期3031-3036,共6页
Recently,metal-organic framework(MOF)-based multienzyme systems integrating different functional natural enzymes and/or nanomaterial-basedartificial enzymes are attracting increasing attention due to their high cataly... Recently,metal-organic framework(MOF)-based multienzyme systems integrating different functional natural enzymes and/or nanomaterial-basedartificial enzymes are attracting increasing attention due to their high catalytic efficiency and promising application in sensing.Simpleand controllable integration of enzymes or nanozymes within MOFs is crucial for achieving efficient cascade catalysis and high stability.Here,we report a facile electrochemical assisted biomimetic mineralization strategy to prepare an artificial multienzyme system for efficient electrochemicaldetection of biomolecules.By using the G0x@Cu-MOF/copper foam(G0x@Cu-MOF/CF)architecture as a proof of concept,efficientenzyme immobilization and cascade catalysis were achieved by in situ encapsulation of glucose oxidase(GOx)within MOFs layer grown onthree-dimensional(3D)porous conducting CF via a facile one-step electrochemical assisted biomimetic mineralization strategy.Due to thebio-electrocatalytic cascade reaction mechanism,this well-designed GOx@Cu-MOF modified electrode exhibited superior catalytic activityand thermal stability for glucose sensing.Notably,the activity of GOx@Cu-MOF/CF still remained at ca.80%after being incubated at 80℃.In sharp contrast,the activity of the unprotected electrode was reduced to the original 10%after the same treatment.The design strategypresented here may be useful in fabricating highly stable enzyme@MOF composites applied for efficient photothermal therapy and otherplatform under high temperature. 展开更多
关键词 METAL-ORGANIC frameworks artificial multienzyme electrochemical assisted BIOMIMETIC MINERALIZATION GLUCOSE detection thermal stability
原文传递
Surfactant dependent evolution of Au-Pd alloy nanocrystals from trisoctahedron to excavated rhombic dodecahedron and multipod: a matter of crystal growth kinetics 被引量:2
6
作者 Qiaoli Chen Guifen Du +3 位作者 Yongdi Dong Zhenming Cao zhaoxiong xie Lansun Zheng 《Science Bulletin》 SCIE EI CAS CSCD 2017年第20期1359-1364,共6页
In wet chemical syntheses of noble metal nanocrystals,surfactants play crucial roles in regulating their morphology.To date,more attention has been paid to the effect of the surfactant on the surface energy of crystal... In wet chemical syntheses of noble metal nanocrystals,surfactants play crucial roles in regulating their morphology.To date,more attention has been paid to the effect of the surfactant on the surface energy of crystal facets,while less attention has been paid to its effect on the growth kinetics.In this paper,using the growth of Au-Pd alloy nanocrystals as an example,we demonstrate that different concentration of surfactant hexadecyltrimethyl ammonium chloride(CTAC)may cause the different packing density of CTA+bilayers on different sites(face,edge or vertex)of crystallite surface,which would change the crystal growth kinetics and result in preferential crystal growth along the edge or vertex of crystallites.The unique shape evolution from trisoctahedron to excavated rhombic dodecahedron and multipod structure for Au-Pd alloy nanocrystals was successfully achieved by simply adjusting the concentration of CTAC.These results help to understand the effect of surfactants on the shape evolution of nanocrystals and open up avenues to the rational synthesis of nanocrystals with the thermodynamically unfavorable morphologies. 展开更多
关键词 Au-Pd alloy MORPHOLOGY Nanocrystal SURFACTANT
原文传递
A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties 被引量:7
7
作者 Yaqi Jiang Jingyun Su +4 位作者 Yanan Yang Yanyan Jia Qiaoli Chen zhaoxiong xie Lansun Zheng 《Nano Research》 SCIE EI CAS CSCD 2016年第3期849-856,共8页
Rh is an important catalyst that is widely used in a variety of organic reactions. In recent years, many efforts have focused on improving its catalytic efficiency by fabricating catalyst nanoparticles with controlled... Rh is an important catalyst that is widely used in a variety of organic reactions. In recent years, many efforts have focused on improving its catalytic efficiency by fabricating catalyst nanoparticles with controlled size and morphology. However, the frequently employed synthesis route using organic compounds either as the reaction medium or capping agent often results in residual molecules on the catalyst surface, which in turn drastically diminishes the catalytic performance. Herein, we report a facile, aqueous, surfactant-free synthesis of a novel Rh flower- like structure obtained via hydrothermal reduction of Rh(acac)3 by formaldehyde. The unique Rh nanoflowers were constructed from ultrathin nanosheets, whose basal surfaces comprised {111} facets with an average thickness of -1.1 nm. The specific surface area measured by CO stripping was 79.3 m2-g-1, which was much larger than that of commercial Rh black. More importantly, the Rh nanoflower catalyst exhibited excellent catalytic performance in the catalytic hydrogenation of phenol and cyclohexene, in contrast to the commercial Rh black and polyvinyl pyrrolidone (PVP)-capped Rh nanosheets exposed by similar {111} basal surfaces. 展开更多
关键词 rhodium nanocrystal nanosheet hydrogenation reaction
原文传递
Origin of symmetry breaking in the seed-mediated growth of bi-metal nano-heterostructures 被引量:1
8
作者 Guifen Du Jun Pei +5 位作者 Zhiyuan Jiang Qiaoli Chen Zhenming Cao Qin Kuang zhaoxiong xie Lansun Zheng 《Science Bulletin》 SCIE EI CSCD 2018年第14期892-899,共8页
Seed-mediated growth is the most general way to controllably synthesize bimetal nano-heterostructures.Despite successful instances through trial and error were reported, the way for second metal depositing on the seed... Seed-mediated growth is the most general way to controllably synthesize bimetal nano-heterostructures.Despite successful instances through trial and error were reported, the way for second metal depositing on the seed, namely whether the symmetry of resulted nano-heterostructure follows the original crystal symmetry of seed metal, remains an unpredictable issue to date. In this work, we propose that the thermodynamic factor, i.e., the difference of equilibrium electrochemical potentials(corresponding to their Fermi levels) of two metals in the growth solution, plays a key role for the symmetry breaking of bimetal nano-heterostructures during the seed-mediated growth. As a proof-of-principle experiment, by reversing the relative position of Fermi levels of the Pd nanocube seeds and the second metal Au with changing the concentration of reductant(L-ascorbic acid) in the growth solution, the structure of as-prepared products successfully evolved from centrosymmetric Pd@Au core-shell trisoctahedra to asymmetric Pd-Au hetero-dimers. The idea was further demonstrated by the growth of Ag on the Pd seeds. The present work intends to reveal the origin of symmetry breaking in the seed-mediated growth of nano-heterostructures from the viewpoint of thermodynamics, and these new insights will in turn help to achieve rational construction of bimetal nano-heterostructures with specific functions. 展开更多
关键词 中心对称 金属片 生长期 膨胀率 种子 起源 电气化学 相对位置
原文传递
N-doped carbon shell encapsulated PtZn intermetallic nanopartides as highly efficient catalysts for fuel cells
9
作者 Yakun Xue Huiqi Li +8 位作者 xieweiyi Ye Shuangli Yang Zhiping Zheng Xiao Han Xibo Zhang Luning Chen zhaoxiong xie Qin Kuang Lansun Zheng 《Nano Research》 SCIE EI CAS CSCD 2019年第10期2490-2497,共8页
The high cost and poor durability of Pt nanoparticles(NPs)have always been great challenges to the commercialization of proton exchange membrane fuel cells(PEMFCs).Pt-based intermetallic NPs with a highly ordered stru... The high cost and poor durability of Pt nanoparticles(NPs)have always been great challenges to the commercialization of proton exchange membrane fuel cells(PEMFCs).Pt-based intermetallic NPs with a highly ordered structure are considered as promising catalysts for PEMFCs due to their high catalytic activity and stability.Here,we reported a facile method to synthesize N-doped carbon encapsulated PtZn intermetallic(PtZn@NC)NPs via the pyrolysis of Pt@Zn-based zeolitic imidazolate framework-8(Pt@ZIF-8)composites.The catalyst obtained at 800℃(10%-PtZn@NC-800)was found to exhibit a half-wave potential(Ev2)up to 0.912 V versus reversible hydrogen electrode(RHE)for the cathodic oxygen reduction reaction in an acidic medium,which shifted by 26 mV positively compared to the benchmark Pt/C catalyst.Besides,the mass activity and specific activity of 10%-PtZn@NC-800 at 0.9 V versus RHE were nearly 3 and 5 times as great as that of commercial Pt/C,respectively.It is worth noting that the PtZn@NC showed excel Ient stability in oxygen reducti on reacti on(ORR)with just 1 mV of the Ev2 loss after 5,000 cycles,which is superior to that of most reported PtM catalysts(especially those disordered solid solutions).Furthermore,such N-doped carb on shell encapsulated PtZn intermetallic NPs showed significa ntly enha need performances towards the anodic oxidation reaction of organic small molecules(such as methanol and formic acid).The synergistic effects of the N doped carbon encapsulation structure and intermetallic NPs are responsible for outstanding performances of the catalysts.This work provides us a new engineering strategy to acquire highly active and stable multifunctional catalysts for PEMFCs. 展开更多
关键词 INTERMETALLIC nano particles oxygen reducti on reaction N-DOPING METAL-ORGANIC frameworks PYROLYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部