Transferring high-quality exfoliated graphene flakes onto different substrates while keeping the graphene free of polymer residues is of great importance, but at the same time very challenging. Currently, the only fea...Transferring high-quality exfoliated graphene flakes onto different substrates while keeping the graphene free of polymer residues is of great importance, but at the same time very challenging. Currently, the only feasible way is the so-called all-dry "pick-and-lift" method, in which a hexagonal boron nitride(hBN) flake is employed to serve as a stamp to pick up graphene from one substrate and to lift it down onto another substrate. The transferred graphene samples, however,are always covered or encapsulated by hBN flakes, which leads to difficulties in further characterizations. Here, we report an improved "pick-and-lift" method, which allows ultra-clean graphene flakes to be transferred onto a variety of substrates without hBN coverage. Basically, by exploiting the superlubricity at the graphene/hBN stack interface, we are able to remove the top-layer hBN stamp by applying a tangential force and expose the underneath graphene.展开更多
Single-walled carbon nanotubes(SWCNTs),due to their outstanding electrical and optical properties,are expected to have extensive applications,such as in transparent conductive fims and ultra-small field-effect transis...Single-walled carbon nanotubes(SWCNTs),due to their outstanding electrical and optical properties,are expected to have extensive applications,such as in transparent conductive fims and ultra-small field-effect transistors(FETs).However,those applications can only be best realized with pure metallic or pure semiconducting SWCNTs.Hence,identifying and separating metallic from semiconducting SWCNTs in as-grown samples are crucial.In addition,knowledge of the type of an SWCNT is also important for further exploring its new properties in fundamental science.Here we report employing scanning near-field optical microscopy(SNOM)as a direct and simple method to identify metallic and semiconducting SWCNTs on SiO2/Si substrates.Metallic and semiconducting SWCNTs show distinct near-field optical responses because the metallic tubes support plasmons whereas the semiconducting tubes do not.The reliability of this method is verified using FET testing and Rayleigh scattering spectroscopy.Our result demonstrates that the SNOM technique provides a reliable,simple,noninvasive and in situ method to distinguish between metallic and semiconducting SWCNTs.展开更多
In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC ...In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC composite films by using conventional melt-mixing methods.Microstructures,static and dynamic mechanical properties of the MLG/PVC composite films were investigated.The results showed that a small amount of MLG loading could greatly increase the mechanical properties of the MLG/PVC composites.The tensile modulus of the 0.96 wt%MLG/PVC composites was up to 40 MPa,increasing by31.3%in comparison to the neat PVC.Such a significant mechanical reinforcement was mainly attributed to uniform dispersion of the large-size MLG,good compatibility and strong interactions among MLG and plasticizers and PVC.展开更多
Graphene oxide(GO) has received considerable attention for glucose detection because of high surface area, abundant functional groups, and good biocompatibility. Defects and functional groups of the GO are beneficial ...Graphene oxide(GO) has received considerable attention for glucose detection because of high surface area, abundant functional groups, and good biocompatibility. Defects and functional groups of the GO are beneficial to immobilization of glucose oxidase(GOD), but sacrificing electron-transfer capability for highly-sensitive detection. In order to obtain high GOD loading and highly-sensitive detection of biosensors, we first designed and fabricated a graphene-laminated electrode by combining GO and edgefunctionalized graphene(FG) layers together onto glassy-carbon electrode. The graphene-laminated electrodes exhibited faster electron transfer rate, higher GOD loading of 3.80 × 10^(-9) mol·cm^(-2), and higher detection sensitivity of 46.71 μA·mM^(-1)·cm^(-2) than other graphene-based biosensors reported in literature. Such high performance is mainly attributed to the abundant functional groups of GO, high electrical conductivity of FG, and strong interactions between components in the graphene-laminated electrodes.By virtue of their high enzyme loading and highly-sensitive detection, the graphene-laminated electrodes show great potential to be widely used as high-performance biosensors in the field of medical diagnosis.展开更多
Chemical vapor deposition(CVD)graphene film is a promising electrode-modifying material for fabricating high-performance glucose sensor due to its high electrical conductivity and two-dimensional structure over large ...Chemical vapor deposition(CVD)graphene film is a promising electrode-modifying material for fabricating high-performance glucose sensor due to its high electrical conductivity and two-dimensional structure over large area.However,the use of typical metal-based CVD graphene suffers from the residue contamination of polymer transfer-support and heavy metal ions.In this work,we directly grew fewlayer graphene on the SiO2/Si substrate without transfer process and then fabricated graphene-based glucose sensors by sequentially immobilizing glucose oxidase and depositing Nafion layer on its surface that was functionalized by oxygen-plasma treatment.Our transfer-and metal-free process shows distinct advantage over the common metal-CVD method in improving the electrochemical performance by eliminating the contamination of transfer-residue.Thus-obtained glucose sensor shows a high sensitivity(16.16μA mM-1cm-2)with a detection limit of 124.19μM.This method is simple and promising for the development of highly sensitive glucose sensors.展开更多
BRCA2,a clinical prognostic factor,is significantly up-regulated in mRNA level,while its protein expression is often decreased in sporadic breast cancer.However,how BRCA2 protein expressions are suppressed in these tu...BRCA2,a clinical prognostic factor,is significantly up-regulated in mRNA level,while its protein expression is often decreased in sporadic breast cancer.However,how BRCA2 protein expressions are suppressed in these tumors remains unknown.In this study,we demonstrated that miR-1245 directly suppressed BRCA23′-UTR and translation,impaired homologous recombination(HR)-mediated repair,reduced DNA damage-induced Rad51 nuclear foci,and rendered cells hypersensitive to g-irradiation(IR),ul-timately inducing high chromosomal abnormalities in normal breast cells and breast cancer cells.Conversely,inhibiting miR-1245 in breast cancer cells enhanced BRCA2 levels and induced resistance to IR.Furthermore,we demonstrated that c-myc up-regulated miR-1245 expression via direct binding to the miR-1245 promoter,which led to down-regulation of BRCA2 and reduction in HR efficiency.Significantly,miR-1245 levels in primary breast tumors correlated with c-myc overexpression and BRCA2 suppression.These findings uncover a BRCA2 regulatory and signaling pathway in sporadic breast cancer and support a functionally and clinically relevant epigenetic mechanism in cancer pathogenesis.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0302001)the National Natural Science Foundation of China(Grant Nos.11574204 and 11774224)
文摘Transferring high-quality exfoliated graphene flakes onto different substrates while keeping the graphene free of polymer residues is of great importance, but at the same time very challenging. Currently, the only feasible way is the so-called all-dry "pick-and-lift" method, in which a hexagonal boron nitride(hBN) flake is employed to serve as a stamp to pick up graphene from one substrate and to lift it down onto another substrate. The transferred graphene samples, however,are always covered or encapsulated by hBN flakes, which leads to difficulties in further characterizations. Here, we report an improved "pick-and-lift" method, which allows ultra-clean graphene flakes to be transferred onto a variety of substrates without hBN coverage. Basically, by exploiting the superlubricity at the graphene/hBN stack interface, we are able to remove the top-layer hBN stamp by applying a tangential force and expose the underneath graphene.
基金the National Natural Science Foundation of China under Grant Nos.11574204 and 11774224the National Key Research and Development Program of China(2016YFA0302001)+1 种基金Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningadditional support from a Shanghai talent program。
文摘Single-walled carbon nanotubes(SWCNTs),due to their outstanding electrical and optical properties,are expected to have extensive applications,such as in transparent conductive fims and ultra-small field-effect transistors(FETs).However,those applications can only be best realized with pure metallic or pure semiconducting SWCNTs.Hence,identifying and separating metallic from semiconducting SWCNTs in as-grown samples are crucial.In addition,knowledge of the type of an SWCNT is also important for further exploring its new properties in fundamental science.Here we report employing scanning near-field optical microscopy(SNOM)as a direct and simple method to identify metallic and semiconducting SWCNTs on SiO2/Si substrates.Metallic and semiconducting SWCNTs show distinct near-field optical responses because the metallic tubes support plasmons whereas the semiconducting tubes do not.The reliability of this method is verified using FET testing and Rayleigh scattering spectroscopy.Our result demonstrates that the SNOM technique provides a reliable,simple,noninvasive and in situ method to distinguish between metallic and semiconducting SWCNTs.
基金financial supports from the Ministry of Science and Technology of China(No.2012AA030303)the Hundred Talents Program of Chinese Academy of Sciences(No.CAS2012)the Fund for Creative Research Groups(No.51221264)
文摘In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC composite films by using conventional melt-mixing methods.Microstructures,static and dynamic mechanical properties of the MLG/PVC composite films were investigated.The results showed that a small amount of MLG loading could greatly increase the mechanical properties of the MLG/PVC composites.The tensile modulus of the 0.96 wt%MLG/PVC composites was up to 40 MPa,increasing by31.3%in comparison to the neat PVC.Such a significant mechanical reinforcement was mainly attributed to uniform dispersion of the large-size MLG,good compatibility and strong interactions among MLG and plasticizers and PVC.
基金financial supports from the National Natural Science Foundation of China (No. 51802317)Liaoning Natural Science Foundation (No. 2019JH3/30100008)+1 种基金Liaoning Key Research & Development Project (No. 2019JH2/10300045)Joint Fund for Advanced Equipment and Aerospace Science and Technology of China (6141B061306)。
文摘Graphene oxide(GO) has received considerable attention for glucose detection because of high surface area, abundant functional groups, and good biocompatibility. Defects and functional groups of the GO are beneficial to immobilization of glucose oxidase(GOD), but sacrificing electron-transfer capability for highly-sensitive detection. In order to obtain high GOD loading and highly-sensitive detection of biosensors, we first designed and fabricated a graphene-laminated electrode by combining GO and edgefunctionalized graphene(FG) layers together onto glassy-carbon electrode. The graphene-laminated electrodes exhibited faster electron transfer rate, higher GOD loading of 3.80 × 10^(-9) mol·cm^(-2), and higher detection sensitivity of 46.71 μA·mM^(-1)·cm^(-2) than other graphene-based biosensors reported in literature. Such high performance is mainly attributed to the abundant functional groups of GO, high electrical conductivity of FG, and strong interactions between components in the graphene-laminated electrodes.By virtue of their high enzyme loading and highly-sensitive detection, the graphene-laminated electrodes show great potential to be widely used as high-performance biosensors in the field of medical diagnosis.
基金financially supported by the Ministry of Science and Technology of China(Nos.2016YFA0200101 and 2016YFB04001104)the National Natural Science Foundation of China(Nos.51325205,51290273,51521091,51272256,61422406,51802317 and 61574143)+5 种基金the Chinese Academy of Sciences(Nos.KGZD-EW-303-1,KGZD-EW-303-3,KGZD-EW-T06 and XDPB06)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB30000000)the Liaoning Revitalization Talents Program(No.XLYC1808013)the Liaoning Key R&D Programthe Program for Guangdong Introducing Innovative and Enterpreneurial Teamsthe Development and Reform Commission of Shenzhen Municipality for the development of the“Low-Dimensional Materials and Devices”discipline.
文摘Chemical vapor deposition(CVD)graphene film is a promising electrode-modifying material for fabricating high-performance glucose sensor due to its high electrical conductivity and two-dimensional structure over large area.However,the use of typical metal-based CVD graphene suffers from the residue contamination of polymer transfer-support and heavy metal ions.In this work,we directly grew fewlayer graphene on the SiO2/Si substrate without transfer process and then fabricated graphene-based glucose sensors by sequentially immobilizing glucose oxidase and depositing Nafion layer on its surface that was functionalized by oxygen-plasma treatment.Our transfer-and metal-free process shows distinct advantage over the common metal-CVD method in improving the electrochemical performance by eliminating the contamination of transfer-residue.Thus-obtained glucose sensor shows a high sensitivity(16.16μA mM-1cm-2)with a detection limit of 124.19μM.This method is simple and promising for the development of highly sensitive glucose sensors.
基金supported by the National Natural Science Foundation of China (Nos.81071647,81071762,30872930,81071780,81030048,30870963,and 30831160517)the Science and Technology Department of Guangdong Province,China (No.S2011020002757)the Fundamental Research Funds for the Central Universities (No.10ykzd03).
文摘BRCA2,a clinical prognostic factor,is significantly up-regulated in mRNA level,while its protein expression is often decreased in sporadic breast cancer.However,how BRCA2 protein expressions are suppressed in these tumors remains unknown.In this study,we demonstrated that miR-1245 directly suppressed BRCA23′-UTR and translation,impaired homologous recombination(HR)-mediated repair,reduced DNA damage-induced Rad51 nuclear foci,and rendered cells hypersensitive to g-irradiation(IR),ul-timately inducing high chromosomal abnormalities in normal breast cells and breast cancer cells.Conversely,inhibiting miR-1245 in breast cancer cells enhanced BRCA2 levels and induced resistance to IR.Furthermore,we demonstrated that c-myc up-regulated miR-1245 expression via direct binding to the miR-1245 promoter,which led to down-regulation of BRCA2 and reduction in HR efficiency.Significantly,miR-1245 levels in primary breast tumors correlated with c-myc overexpression and BRCA2 suppression.These findings uncover a BRCA2 regulatory and signaling pathway in sporadic breast cancer and support a functionally and clinically relevant epigenetic mechanism in cancer pathogenesis.