期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Reduced graphene oxide-porous In2O3 nanocubes hybrid nanocomposites for room-temperature NH3 sensing 被引量:2
1
作者 zhebin tian Peng Song +1 位作者 Zhongxi Yang Qi Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第8期2067-2070,共4页
Metal oxide semiconductors(MOS)-reduced graphene oxide(rGO)nanocomposites have attracted great attention for room-tempe rature gas sensing applications.The development of novel sensing materials is the key issue for t... Metal oxide semiconductors(MOS)-reduced graphene oxide(rGO)nanocomposites have attracted great attention for room-tempe rature gas sensing applications.The development of novel sensing materials is the key issue for the effective detection of ammoniagas at room temperature.In the present work,the novel reduced graphene oxide(rGO)-In2 O3 nanocubes hybrid materials have been prepared via a simple electrostatic self-assembly strategy.Characterization re sults exhibit that the intimate interfacial contact between In2 O3 nanocubes and the rGO sheets are achieved.Particularly,the as-prepared rGO/In2 O3 nanocomposites displayed high sensitivity,fast response and excellent selectivity towards ammonia(NH3)at room-temperature,which clearly uncovers the merit of structural design and rational integration with rGO sheets.The superior gas sensing performance of the rGO/In2 O3 nanocomposites can be attributed to the synergetic effects of rGO sheets and porous In2 O3 nanocubes.The reported synthesis offers a general approach to rGO/MOS-based semiconductor composites for room-temperature gas sensing applications. 展开更多
关键词 Reduced graphene oxide In2O3nanocubes Room-temperature Gas sensors AMMONIA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部