期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries 被引量:4
1
作者 Jingxue Li Liqin Dai +7 位作者 zhefan wang Hao wang Lijing Xie Jingpeng Chen Chong Yan Hong Yuan Hongliang wang Chengmeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期736-744,共9页
Lithium-sulfur battery(LSB) has high energy density but is limited by the polysulfides shuttle and dendrite growth during cycling. Herein, a free-standing cellulose nanofiber(CNF) separator is designed and fabricated ... Lithium-sulfur battery(LSB) has high energy density but is limited by the polysulfides shuttle and dendrite growth during cycling. Herein, a free-standing cellulose nanofiber(CNF) separator is designed and fabricated in isopropanol/water suspension through vacuum filtration progress. CNFs with abundant polar oxygen-containing functional groups can chemically immobilize the polysulfides, and suppress the formation of the dendrites by controlling the surface morphology of the SEI on lithium metal in LSB. The isopropanol content in a suspension can fine-tune the pore structure of the membrane to achieve optimal electrochemical performance. The prepared separator displays integrated advantages of an ultrathin thickness(19 μm), lightweight(0.87 mg cm^(-2)), extremely high porosity(98.05%), and decent electrolyte affinity. As a result, the discharge capacity of the LSB with CNF separator at the first and 100 th cycle is 1.4 and 1.3 times that of PP separator, respectively. Our research provides an environmentalfriendly and facile strategy for the preparation of multifunctional separators for LSBs. 展开更多
关键词 CELLULOSE SEPARATOR Lithium-sulfur battery Shuttle effect Growth of dendrite
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部