Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical propert...Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical properties,especially the strength and toughness,706 MPa and 7.33 MPa·m^(1/2),respectively,coupled with high hardness of 21.3 GPa,and stiffness of 452 GPa.SiC and Zr_(2)[Al(Si)]_(4)C_(5) constituted a reinforcing system with synergistic effects including grain refinement,grain pull-out as well as crack branching,bridging,and deflection.Besides,the oxidation results of the composites showed that the oxidation kinetics followed the parabolic law at 1600℃,and the oxidation rate constants increased with the increase of Zr_(2)[Al(Si)]_(4)C_(5) content.The formation and evolution model of the oxidation structure was also investigated,and the oxide scale of the composite exhibited a three-layer structure.展开更多
基金supported by the National Natural Science Foundation of China(No.51902031)the Natural Science Foundation of the Jiangsu Higher Education Institute of China(Nos.18KJB430002 and 18KJB430001)+1 种基金the Six Talent Peaks Project of Jiangsu Province(No.2018-SWYY-001)the Scientific Research Foundation of Changshu Institute of Technology(No.XZ1639).
文摘Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical properties,especially the strength and toughness,706 MPa and 7.33 MPa·m^(1/2),respectively,coupled with high hardness of 21.3 GPa,and stiffness of 452 GPa.SiC and Zr_(2)[Al(Si)]_(4)C_(5) constituted a reinforcing system with synergistic effects including grain refinement,grain pull-out as well as crack branching,bridging,and deflection.Besides,the oxidation results of the composites showed that the oxidation kinetics followed the parabolic law at 1600℃,and the oxidation rate constants increased with the increase of Zr_(2)[Al(Si)]_(4)C_(5) content.The formation and evolution model of the oxidation structure was also investigated,and the oxide scale of the composite exhibited a three-layer structure.