We study the structure of a metric n-Lie algebra G over the complex field C. Let G = S+R be the Levi decomposition, where T4 is the radical of G and S is a strong semisimple subalgebra of G. Denote by re(G) the num...We study the structure of a metric n-Lie algebra G over the complex field C. Let G = S+R be the Levi decomposition, where T4 is the radical of G and S is a strong semisimple subalgebra of G. Denote by re(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R^⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R^⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to rn(G) + 1. The centralizer of T4 in G is equal to the sum of all minimal ideals; it is the direct sum of R^⊥and the center of G. Finally, G has no strong semisimple ideals if and only if R^⊥ R.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10871192)Natural Science Foundation of Hebei Province, China (Grant No. A2010000194)
文摘We study the structure of a metric n-Lie algebra G over the complex field C. Let G = S+R be the Levi decomposition, where T4 is the radical of G and S is a strong semisimple subalgebra of G. Denote by re(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R^⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R^⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to rn(G) + 1. The centralizer of T4 in G is equal to the sum of all minimal ideals; it is the direct sum of R^⊥and the center of G. Finally, G has no strong semisimple ideals if and only if R^⊥ R.