Cold atmospheric plasma jet is widely used in many fields due to the reactive oxygen species and low temperature for heat-sensitive products. This paper presents the inactivation of bacteria via a pulsed plasma jet wi...Cold atmospheric plasma jet is widely used in many fields due to the reactive oxygen species and low temperature for heat-sensitive products. This paper presents the inactivation of bacteria via a pulsed plasma jet with He/O2 mixed gas. To evaluate the disinfection performance, Staphylococcus aureus was used as an indicator bacteria for experiments. When the plasma jet dealt with agar plates spraying bacteria, it was found that mixed gas has a better performance than pure inert gas, indicated by the disinfection area. The increment of oxygen gas addition was beneficial to the disinfection ability of the plasma jet, while the gas had an opposite effect on the length of jet production. The experiments showed the efficacy of Staphylococcus aureus disinfection could reach up to 99.47% via a helium/oxygen (2%) plasma jet.展开更多
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave fie...In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively.展开更多
Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theo...Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.展开更多
Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owin...Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system.展开更多
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,...The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.展开更多
The dynamics beamline(D-Line),which combines synchrotron radiation infrared spectroscopy(SR-IR)and energy-disper-sive X-ray absorption spectroscopy(ED-XAS),is the first beamline in the world to realize concurrent ED-X...The dynamics beamline(D-Line),which combines synchrotron radiation infrared spectroscopy(SR-IR)and energy-disper-sive X-ray absorption spectroscopy(ED-XAS),is the first beamline in the world to realize concurrent ED-XAS and SR-IR measurements at the same sample position on a millisecond time-resolved scale.This combined technique is effective for investigating rapid structural changes in atoms,electrons,and molecules in complicated disorder systems,such as those used in physics,chemistry,materials science,and extreme conditions.Moreover,ED-XAS and SR-IR can be used independently in the two branches of the D-Line.The ED-XAS branch is the first ED-XAS beamline in China,which uses a tapered undulator light source and can achieve approximately 2.5×10^(12)photons/s·300 eV BW@7.2 keV at the sample position.An exchange-able polychromator operating in the Bragg-reflection or Laue-transmission configuration is used in different energy ranges to satisfy the requirements for beam size and energy resolution.The focused beam size is approximately 3.5μm(H)×21.5μm(V),and the X-ray energy range is 5–25 keV.Using one-and two-dimensional position-sensitive detectors with frame rates of up to 400 kHz enables time resolutions of tens of microseconds to be realized.Several distinctive techniques,such as the concurrent measurement of in situ ED-XAS and infrared spectroscopy,time-resolved ED-XAS,high-pressure ED-XAS,XMCD,and pump-probe ED-XAS,can be applied to achieve different scientific goals.展开更多
Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the e...Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS.展开更多
Objective: Immunotherapeutic outcomes and clinical characteristics of claudin 18 isoform 2 positive(CLDN18.2-positive) gastric cancer(GC) vary in different clinical studies, making it difficult to optimize antiCLDN18....Objective: Immunotherapeutic outcomes and clinical characteristics of claudin 18 isoform 2 positive(CLDN18.2-positive) gastric cancer(GC) vary in different clinical studies, making it difficult to optimize antiCLDN18.2 therapy. We conducted a retrospective analysis to explore the association of CLDN18.2 expression with clinicopathological characteristics and immunotherapeutic outcomes in GC.Methods: A total of 536 advanced GC patients from 2019 to 2021 in the CT041-CG4006 and CT041-ST-01clinical trials were included in the analysis. CLDN18.2 expression on ≥40% of tumor cells(2+, 40%) and CLDN18.2 expression on ≥70% of tumor cells(2+, 70%) were considered the two levels of positively expressed GC. The clinicopathological characteristics and immunotherapy outcomes of GC patients were analyzed according to CLDN18.2 expression status.Results: CLDN18.2 was expressed in 57.6%(cut-off: 2+, 40%) and 48.9%(cut-off: 2+, 70%) of patients.Programmed death-ligand 1(PD-L1) and CLDN18.2 were co-expressed in 19.8% [combined positive score(CPS)≥1, CLDN18.2(cut-off: 2+, 40%)] and 17.2% [CPS≥5, CLDN18.2(cut-off: 2+, 70%)] of patients.CLDN18.2 expression positively correlated with younger age, female sex, non-gastroesophageal junction(nonGEJ), and diffuse phenotype(P<0.001). HER2 and PD-L1 expression were significantly lower in CLDN18.2-positive GC(both P<0.05). Uterine adnexa metastasis(P<0.001) was more frequent and liver metastasis(P<0.001)was less common in CLDN18.2-positive GC. Overall survival and immunotherapy-related progression-free survival(ir PFS) were inferior in the CLDN18.2-positive group.Conclusions: CLDN18.2-positive GC is associated with poor prognosis and worse immunotherapeutic outcomes. The combination of anti-CLDN18.2 therapy, anti-PD-L1/PD-1 therapy, and chemotherapy for GC requires further investigation.展开更多
Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and freque...Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed.展开更多
BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managi...BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT.展开更多
Clinical data indicates that glioma patients have poor treatment outcomes and clinical prognosis.The role of olfactory signaling pathway-related genes(OSPRGs)in glioma has not been fully elucidated.In this study,we ai...Clinical data indicates that glioma patients have poor treatment outcomes and clinical prognosis.The role of olfactory signaling pathway-related genes(OSPRGs)in glioma has not been fully elucidated.In this study,we aimed to investigate the role and relationship between OSPRGs and glioma.Univariate and multivariate Cox regression analyses were performed to assess the relationship between OSPRGs and the overall survival of glioma based on public cohorts,and the target gene(G Protein Subunit Alpha L,GNAL)was screened.The association of GNAL expression with clinicopathological characteristics,gene mutation landscape,tumor immune microenvironment(TIME),deoxyribonucleic acid(DNA)methylation,and naris-occlusion controlled genes(NOCGs)was performed.Immunohistochemistry was used to evaluate GNAL level in glioma.Further analysis was conducted to evaluate the drug sensitivity,immunotherapy response,and functional enrichment of GNAL.GNAL was an independent prognostic factor,and patients with low GNAL expression have a poor prognosis.Expression of GNAL was closely associated with clinicopathological characteristics,DNA methylation,and several immune-related pathways.Immune infiltration analysis indicated that GNAL levels were negatively correlated with immune scores.GNAL low-expression group showed efficacy with anti-PD-1 therapy.Ten compounds with significantly different half-maximal inhibitory concentration(IC50)values between the GNAL high and low-expression groups were identified.Furthermore,its expression was associated with several immune cells,immune-related genes,and NOCGs.The expression of GNAL is closely associated with clinicopathological characteristics,TIME,and the response to therapeutic interventions,highlighting its potential as a prognostic biomarker for glioma.展开更多
Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial ...Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.展开更多
BACKGROUND The lack of specific symptoms of gastric cancer(GC)causes great challenges in its early diagnosis.Thus it is essential to identify the risk factors for early diagnosis and treatment of GC and to improve the...BACKGROUND The lack of specific symptoms of gastric cancer(GC)causes great challenges in its early diagnosis.Thus it is essential to identify the risk factors for early diagnosis and treatment of GC and to improve the survival rates.AIM To assist physicians in identifying changes in the output of publications and research hotspots related to risk factors for GC,constructing a list of key risk factors,and providing a reference for early identification of patients at high risk for GC.METHODS Research articles on risk factors for GC were searched in the Web of Science core collection,and relevant information was extracted after screening.The literature was analyzed using Microsoft Excel 2019,CiteSpace V,and VOSviewer 1.6.18.RESULTS A total of 2514 papers from 72 countries and 2507 research institutions were retrieved.China(n=1061),National Cancer Center(n=138),and Shoichiro Tsugane(n=36)were the most productive country,institution,or author,respectively.The research hotspots in the study of risk factors for GC are summarized in four areas,namely:Helicobacter pylori(H.pylori)infection,single nucleotide polymorphism,bio-diagnostic markers,and GC risk prediction models.CONCLUSION In this study,we found that H.pylori infection is the most significant risk factor for GC;single-nucleotide polymorphism(SNP)is the most dominant genetic factor for GC;bio-diagnostic markers are the most promising diagnostic modality for GC.GC risk prediction models are the latest current research hotspot.We conclude that the most important risk factors for the development of GC are H.pylori infection,SNP,smoking,diet,and alcohol.展开更多
BACKGROUND Multisystem inflammatory syndrome in adults(MIS-A)is a rare but severe disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 infection.It develops in adults with inflammation...BACKGROUND Multisystem inflammatory syndrome in adults(MIS-A)is a rare but severe disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 infection.It develops in adults with inflammation of different organs including the gastrointestinal tract,heart,kidneys,skin and hematopoietic system.CASE SUMMARY We present a 58-year-old Chinese man diagnosed with MIS-A.His chief complaints were fever,generalized fatigue and anorexia,accompanied with rashes on his back.Further examination showed cardiac,renal and liver injury.He had melena and gastroscopy indicated esophageal ulcer and severe esophagitis.Repeated blood and sputum culture did not show growth of bacteria or fungi.Antibiotic treatment was stopped due to unsatisfactory performance.His condition improved after prednisone and other supportive treatment.CONCLUSION Gastrointestinal involvement in MIS-A is not uncommon.Intestinal involvement predominates,and esophageal involvement is rarely reported.Esophageal ulcer with bleeding could also be a manifestation of MIS-A.展开更多
BACKGROUND Intracranial epidermoid cyst(IEC)transformation to malignant squamous cell carcinoma(SCC)is extremely rare,and its etiology is yet unknown.Currently,SCC is treated by performing surgery,followed by a combin...BACKGROUND Intracranial epidermoid cyst(IEC)transformation to malignant squamous cell carcinoma(SCC)is extremely rare,and its etiology is yet unknown.Currently,SCC is treated by performing surgery,followed by a combination of radiotherapy and chemotherapy.It is crucial to identify efficient and trustworthy therapeutic targets for SCC to improve its diagnosis,prognosis,and treatment.CASE SUMMARY In this study,we report the case of a 47-year-old female patient with SCC,which progressed from IEC in the left internal capsule region.The patient was sought treatment at our hospital for severe diplopic vision,accompanied with speech disorder and memory loss.Based on the clinical and postoperative pathology,this patient was finally diagnosed with SCC.To identify disease-causing variants,whole exome sequencing(WES)was performed on the proband.WES revealed two pathogenic missense mutations on Gap junction protein beta 2(GJB2)(c.257C>T)and Toll-like receptor 2(TLR2)(c.1039A>G),respectively.CONCLUSION This study provided the first clinical evidence for demonstrating the role of GJB2 and TLR2 in IEC development and treatment.We further confirmed WES as a robust and reliable technique for underlying rare and complex disease-related genetic factor identification.展开更多
This study investigated the relationship between electrocardiography(ECG)and serum potassium levels in 100 children aged 6–18 years with chronic kidney disease admitted to the Department of Nephrology,Beijing Childre...This study investigated the relationship between electrocardiography(ECG)and serum potassium levels in 100 children aged 6–18 years with chronic kidney disease admitted to the Department of Nephrology,Beijing Children's Hospital Affiliated,Capital Medical University,China.The research data were obtained from children in their growth and development stages with significant differences in their physical characteristics.We established a promising indicator,Ts/a,calculated Ts/a for V2–V6 in 100 children,and correlated it with their serum potassium levels.Despite significant differences in age and body shape between developing children and adults,the results showed that the Ts/a values of V5 and V6 were more strongly correlated with blood potassium values.T wave at the V5 and V6 leads in children can reflect the direction of the primary amplitude of the T-wave and Twave downward slope,and the heart space position in the chest characteristics during childhood lead to these results.This study provides an essential foundation for the future mobile monitoring of serum potassium levels.展开更多
Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide resear...Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide research field and proven to be of great interest for use in a biomedical system, mechanical system, physical system, as the fact of something such as an organisation regulating itself without intervention from external perturbation. Here, they focus on the most recent discoveries of self-regulation phenomenon and progress in utilising the self-regulation design. This paper concludes by examining various practical applications of the remarkable materials and systems including manipulation of the oil/water interface, cell out-layer structure, radical activity, electron energy level, and mechanical structure of nanomaterials. From material science to bioengineering, self-regulation proves to be not only viable, but increasingly useful in many applications. As part of intelligent engineering, self-regulatory materials are expected to be more used as integrated intelligent components.展开更多
基金supported by National Natural Science Foundation of China (No. 51377145)the Science and Technology Program of Zhejiang Province China (Nos. 2015F10011 and 2014C33022)
文摘Cold atmospheric plasma jet is widely used in many fields due to the reactive oxygen species and low temperature for heat-sensitive products. This paper presents the inactivation of bacteria via a pulsed plasma jet with He/O2 mixed gas. To evaluate the disinfection performance, Staphylococcus aureus was used as an indicator bacteria for experiments. When the plasma jet dealt with agar plates spraying bacteria, it was found that mixed gas has a better performance than pure inert gas, indicated by the disinfection area. The increment of oxygen gas addition was beneficial to the disinfection ability of the plasma jet, while the gas had an opposite effect on the length of jet production. The experiments showed the efficacy of Staphylococcus aureus disinfection could reach up to 99.47% via a helium/oxygen (2%) plasma jet.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.52208384 and 51934001)the National Key Research and Development Program of China(No.2021YFB3401501)the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University(No.PBSKL2022C05).
文摘In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.42293354,42293351,and 42277131).
文摘Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rockesoft rockewater interface.Previous studies have not provided a theoretical analysis of the length,inclination angle,and propagation angle of micron-scale cracks,nor have they established appropriate criteria to describe the crack propagation process.The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood,which makes it challenging to prevent engineering disasters in these types of rocks.To address this issue,we have used the existing generalized maximum tangential stress(GMTS)and generalized maximum energy release rate(GMERR)criteria as the basis and introduced parameters related to micron-scale crack propagation and water action.The GMTS and GMERR criteria for micronscale crack propagation in red-bed soft rocks under hydraulic action(abbreviated as the Wmic-GMTS and Wmic-GMERR criteria,respectively)were established to evaluate micron-scale crack propagation in redbed soft rocks under hydraulic action.The influence of the parameters was also described.The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests(UCTs)based on digital image correlation(DIC)technology.The study analyzed the length,propagation and inclination angles,and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria.The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action.This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action.It covers topics such as the internal-external weakening of nano-scale particles,lateral propagation of micron-scale cracks,weakening of the mechanical properties of millimeter-scale soft rocks,and resulting interface damage at the engineering scale.The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action.
基金supported by the National Key Research and Development Program of China (No.2022YFE0116000)the National Natural Science Foundation of China (No.22288101,21991092,21991090,22202193,and 22172166)+1 种基金the Youth Innovation Promotion Association CAS (2021182)the Innovation Research Foundation of Dalian Institute of Chemical Physics,Chinese Academy of Sciences (DICP I202429 and I202217)。
文摘Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system.
基金financially supported by State Grid Corporation of China (No.5500-202128250A-0-0-00)。
文摘The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.
基金supported by the SSRF Phase-II Beamline Project.
文摘The dynamics beamline(D-Line),which combines synchrotron radiation infrared spectroscopy(SR-IR)and energy-disper-sive X-ray absorption spectroscopy(ED-XAS),is the first beamline in the world to realize concurrent ED-XAS and SR-IR measurements at the same sample position on a millisecond time-resolved scale.This combined technique is effective for investigating rapid structural changes in atoms,electrons,and molecules in complicated disorder systems,such as those used in physics,chemistry,materials science,and extreme conditions.Moreover,ED-XAS and SR-IR can be used independently in the two branches of the D-Line.The ED-XAS branch is the first ED-XAS beamline in China,which uses a tapered undulator light source and can achieve approximately 2.5×10^(12)photons/s·300 eV BW@7.2 keV at the sample position.An exchange-able polychromator operating in the Bragg-reflection or Laue-transmission configuration is used in different energy ranges to satisfy the requirements for beam size and energy resolution.The focused beam size is approximately 3.5μm(H)×21.5μm(V),and the X-ray energy range is 5–25 keV.Using one-and two-dimensional position-sensitive detectors with frame rates of up to 400 kHz enables time resolutions of tens of microseconds to be realized.Several distinctive techniques,such as the concurrent measurement of in situ ED-XAS and infrared spectroscopy,time-resolved ED-XAS,high-pressure ED-XAS,XMCD,and pump-probe ED-XAS,can be applied to achieve different scientific goals.
基金funded by Open Research Fund of State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, China (No. Kfkt2020-01)Hunan Provincial Natural Science Foundation, China (No. 2021JJ40774)the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University, China (No. ZZYJKT2021-01)。
基金supported by the Scientific Research Foundation of Hunan Provincial Education Department,China(22B0893)the Scientific Research Foundation of Hunan Provincial Education Department,China(20A060)。
文摘Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS.
基金supported by Beijing Natural Science Foundation (No. Z20J00105)the National Natural Science Foundation of China (No. 82272627)。
文摘Objective: Immunotherapeutic outcomes and clinical characteristics of claudin 18 isoform 2 positive(CLDN18.2-positive) gastric cancer(GC) vary in different clinical studies, making it difficult to optimize antiCLDN18.2 therapy. We conducted a retrospective analysis to explore the association of CLDN18.2 expression with clinicopathological characteristics and immunotherapeutic outcomes in GC.Methods: A total of 536 advanced GC patients from 2019 to 2021 in the CT041-CG4006 and CT041-ST-01clinical trials were included in the analysis. CLDN18.2 expression on ≥40% of tumor cells(2+, 40%) and CLDN18.2 expression on ≥70% of tumor cells(2+, 70%) were considered the two levels of positively expressed GC. The clinicopathological characteristics and immunotherapy outcomes of GC patients were analyzed according to CLDN18.2 expression status.Results: CLDN18.2 was expressed in 57.6%(cut-off: 2+, 40%) and 48.9%(cut-off: 2+, 70%) of patients.Programmed death-ligand 1(PD-L1) and CLDN18.2 were co-expressed in 19.8% [combined positive score(CPS)≥1, CLDN18.2(cut-off: 2+, 40%)] and 17.2% [CPS≥5, CLDN18.2(cut-off: 2+, 70%)] of patients.CLDN18.2 expression positively correlated with younger age, female sex, non-gastroesophageal junction(nonGEJ), and diffuse phenotype(P<0.001). HER2 and PD-L1 expression were significantly lower in CLDN18.2-positive GC(both P<0.05). Uterine adnexa metastasis(P<0.001) was more frequent and liver metastasis(P<0.001)was less common in CLDN18.2-positive GC. Overall survival and immunotherapy-related progression-free survival(ir PFS) were inferior in the CLDN18.2-positive group.Conclusions: CLDN18.2-positive GC is associated with poor prognosis and worse immunotherapeutic outcomes. The combination of anti-CLDN18.2 therapy, anti-PD-L1/PD-1 therapy, and chemotherapy for GC requires further investigation.
基金Project supported by the Shanghai Science and Technology Innovation Action(Grant No.22dz1208700).
文摘Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed.
基金Supported by the Chinese Nursing Association,No.ZHKY202111Scientific Research Program of School of Nursing,Chongqing Medical University,No.20230307Chongqing Science and Health Joint Medical Research Program,No.2024MSXM063.
文摘BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT.
基金supported by the Hainan Provincial Natural Science Foundation of China(Grant No.821MS137)the Innovative Research Project of Hainan Graduate Students(Grant No.Qhyb2021-58).
文摘Clinical data indicates that glioma patients have poor treatment outcomes and clinical prognosis.The role of olfactory signaling pathway-related genes(OSPRGs)in glioma has not been fully elucidated.In this study,we aimed to investigate the role and relationship between OSPRGs and glioma.Univariate and multivariate Cox regression analyses were performed to assess the relationship between OSPRGs and the overall survival of glioma based on public cohorts,and the target gene(G Protein Subunit Alpha L,GNAL)was screened.The association of GNAL expression with clinicopathological characteristics,gene mutation landscape,tumor immune microenvironment(TIME),deoxyribonucleic acid(DNA)methylation,and naris-occlusion controlled genes(NOCGs)was performed.Immunohistochemistry was used to evaluate GNAL level in glioma.Further analysis was conducted to evaluate the drug sensitivity,immunotherapy response,and functional enrichment of GNAL.GNAL was an independent prognostic factor,and patients with low GNAL expression have a poor prognosis.Expression of GNAL was closely associated with clinicopathological characteristics,DNA methylation,and several immune-related pathways.Immune infiltration analysis indicated that GNAL levels were negatively correlated with immune scores.GNAL low-expression group showed efficacy with anti-PD-1 therapy.Ten compounds with significantly different half-maximal inhibitory concentration(IC50)values between the GNAL high and low-expression groups were identified.Furthermore,its expression was associated with several immune cells,immune-related genes,and NOCGs.The expression of GNAL is closely associated with clinicopathological characteristics,TIME,and the response to therapeutic interventions,highlighting its potential as a prognostic biomarker for glioma.
基金supported by the MOE(Ministry of Education of China)Project of Humanities and Social Sciences(23YJAZH169)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T2020017)Henan Foreign Experts Project No.HNGD2023027.
文摘Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.
基金Supported by Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences,No.CI2023C015YLNational Natural Science Foundation of China,No.82174352.
文摘BACKGROUND The lack of specific symptoms of gastric cancer(GC)causes great challenges in its early diagnosis.Thus it is essential to identify the risk factors for early diagnosis and treatment of GC and to improve the survival rates.AIM To assist physicians in identifying changes in the output of publications and research hotspots related to risk factors for GC,constructing a list of key risk factors,and providing a reference for early identification of patients at high risk for GC.METHODS Research articles on risk factors for GC were searched in the Web of Science core collection,and relevant information was extracted after screening.The literature was analyzed using Microsoft Excel 2019,CiteSpace V,and VOSviewer 1.6.18.RESULTS A total of 2514 papers from 72 countries and 2507 research institutions were retrieved.China(n=1061),National Cancer Center(n=138),and Shoichiro Tsugane(n=36)were the most productive country,institution,or author,respectively.The research hotspots in the study of risk factors for GC are summarized in four areas,namely:Helicobacter pylori(H.pylori)infection,single nucleotide polymorphism,bio-diagnostic markers,and GC risk prediction models.CONCLUSION In this study,we found that H.pylori infection is the most significant risk factor for GC;single-nucleotide polymorphism(SNP)is the most dominant genetic factor for GC;bio-diagnostic markers are the most promising diagnostic modality for GC.GC risk prediction models are the latest current research hotspot.We conclude that the most important risk factors for the development of GC are H.pylori infection,SNP,smoking,diet,and alcohol.
文摘BACKGROUND Multisystem inflammatory syndrome in adults(MIS-A)is a rare but severe disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 infection.It develops in adults with inflammation of different organs including the gastrointestinal tract,heart,kidneys,skin and hematopoietic system.CASE SUMMARY We present a 58-year-old Chinese man diagnosed with MIS-A.His chief complaints were fever,generalized fatigue and anorexia,accompanied with rashes on his back.Further examination showed cardiac,renal and liver injury.He had melena and gastroscopy indicated esophageal ulcer and severe esophagitis.Repeated blood and sputum culture did not show growth of bacteria or fungi.Antibiotic treatment was stopped due to unsatisfactory performance.His condition improved after prednisone and other supportive treatment.CONCLUSION Gastrointestinal involvement in MIS-A is not uncommon.Intestinal involvement predominates,and esophageal involvement is rarely reported.Esophageal ulcer with bleeding could also be a manifestation of MIS-A.
文摘BACKGROUND Intracranial epidermoid cyst(IEC)transformation to malignant squamous cell carcinoma(SCC)is extremely rare,and its etiology is yet unknown.Currently,SCC is treated by performing surgery,followed by a combination of radiotherapy and chemotherapy.It is crucial to identify efficient and trustworthy therapeutic targets for SCC to improve its diagnosis,prognosis,and treatment.CASE SUMMARY In this study,we report the case of a 47-year-old female patient with SCC,which progressed from IEC in the left internal capsule region.The patient was sought treatment at our hospital for severe diplopic vision,accompanied with speech disorder and memory loss.Based on the clinical and postoperative pathology,this patient was finally diagnosed with SCC.To identify disease-causing variants,whole exome sequencing(WES)was performed on the proband.WES revealed two pathogenic missense mutations on Gap junction protein beta 2(GJB2)(c.257C>T)and Toll-like receptor 2(TLR2)(c.1039A>G),respectively.CONCLUSION This study provided the first clinical evidence for demonstrating the role of GJB2 and TLR2 in IEC development and treatment.We further confirmed WES as a robust and reliable technique for underlying rare and complex disease-related genetic factor identification.
基金Transformation Incubation Fund for Scientific and Technological Achievements of Beijing Children's Hospital,Capital Medical University.
文摘This study investigated the relationship between electrocardiography(ECG)and serum potassium levels in 100 children aged 6–18 years with chronic kidney disease admitted to the Department of Nephrology,Beijing Children's Hospital Affiliated,Capital Medical University,China.The research data were obtained from children in their growth and development stages with significant differences in their physical characteristics.We established a promising indicator,Ts/a,calculated Ts/a for V2–V6 in 100 children,and correlated it with their serum potassium levels.Despite significant differences in age and body shape between developing children and adults,the results showed that the Ts/a values of V5 and V6 were more strongly correlated with blood potassium values.T wave at the V5 and V6 leads in children can reflect the direction of the primary amplitude of the T-wave and Twave downward slope,and the heart space position in the chest characteristics during childhood lead to these results.This study provides an essential foundation for the future mobile monitoring of serum potassium levels.
基金This publication was made possible by funding from the NIMHD-RCMI Grant no. 5G12MD007595, the National Institute of Minority Health, Health Disparities, and the NIGMS-BUILD Grant no. 8UL1GM118967, and the National Science Foundation (Grant no. 1700429). This publication was also made possible by the Louisiana Cancer Research Consortium. The contents axe solely the responsibility of the authors and do not necessarily represent the official views of the NIMHD. The authors appreciate the support of Nanhu Scholars Program for Young Scholars of Xinyang Normal University and the Science and Technology Development Plan (No. J17KA006) from Shandong Provincial Education Department as well. Z.H., K.L and D.H. axe equally contributed to this work.
文摘Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide research field and proven to be of great interest for use in a biomedical system, mechanical system, physical system, as the fact of something such as an organisation regulating itself without intervention from external perturbation. Here, they focus on the most recent discoveries of self-regulation phenomenon and progress in utilising the self-regulation design. This paper concludes by examining various practical applications of the remarkable materials and systems including manipulation of the oil/water interface, cell out-layer structure, radical activity, electron energy level, and mechanical structure of nanomaterials. From material science to bioengineering, self-regulation proves to be not only viable, but increasingly useful in many applications. As part of intelligent engineering, self-regulatory materials are expected to be more used as integrated intelligent components.