This paper is a continuation of our recent paper(Electron.J.Probab.,24(141),(2019))and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes(X_(t))t≥0 with branching mec...This paper is a continuation of our recent paper(Electron.J.Probab.,24(141),(2019))and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes(X_(t))t≥0 with branching mechanisms of infinite second moments.In the aforementioned paper,we proved stable central limit theorems for X_(t)(f)for some functions f of polynomial growth in three different regimes.However,we were not able to prove central limit theorems for X_(t)(f)for all functions f of polynomial growth.In this note,we show that the limiting stable random variables in the three different regimes are independent,and as a consequence,we get stable central limit theorems for X_(t)(f)for all functions f of polynomial growth.展开更多
基金supported in part by NSFC(Grant Nos.11731009 and 12071011)the National Key R&D Program of China(Grant No.2020YFA0712900)supported in part by Simons Foundation(#429343,Renming Song)。
文摘This paper is a continuation of our recent paper(Electron.J.Probab.,24(141),(2019))and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes(X_(t))t≥0 with branching mechanisms of infinite second moments.In the aforementioned paper,we proved stable central limit theorems for X_(t)(f)for some functions f of polynomial growth in three different regimes.However,we were not able to prove central limit theorems for X_(t)(f)for all functions f of polynomial growth.In this note,we show that the limiting stable random variables in the three different regimes are independent,and as a consequence,we get stable central limit theorems for X_(t)(f)for all functions f of polynomial growth.