A study of the phase transformation process of a Fe-Ni-B-Si-P-Nb metallic glass using a suite of advanced characterization tools is reported.Transmission electron microscopy(TEM)and small angle neutron scattering(SANS...A study of the phase transformation process of a Fe-Ni-B-Si-P-Nb metallic glass using a suite of advanced characterization tools is reported.Transmission electron microscopy(TEM)and small angle neutron scattering(SANS)experiments show that the as-spun metallic glass ribbon has a dual-phase structure with bcc nanoclusters of a size of 2-3 nm.In situ high-energy X-ray diffraction(XRD)reveals a three-stage crystallization process when heating the metallic glass into supercooled liquid states.The isothermal annealing experiment shows the nanoclusters grow instantly without incubation.The easy formation and phase stability of the nanoclusters are due to the low interfacial energy between the amorphous matrix and clusters,as real space analysis shows that the nanoclusters and the amorphous matrix share similar short-to-mediumrange orders.We further find that the dual-phase structure reduces local magneto-anisotropy and enhances effective magnetic permeability,resulting in an excellent stressimpedance effect without sacrificing coercivity.Our work sheds light on the structure-property engineering of soft magnetic metallic glasses and provides a foundation for developing novel magnetic functional materials with nanostructured dual-phases.展开更多
When an equiatomic multi-component alloy is quenched from its molten state down to room temperature,either a solid solution crystalline alloy or a metallic glass is formed.The former is called a high-entropy alloy,whe...When an equiatomic multi-component alloy is quenched from its molten state down to room temperature,either a solid solution crystalline alloy or a metallic glass is formed.The former is called a high-entropy alloy,whereas the latter is referred as a high-entropy metallic glass(HE-MG).In such multicomponent alloys,thermodynamic parame-ters,e.g.,the mixing entropy,the mixing enthalpy and other parameters such as atomic size mismatch,determine the resulting phases.展开更多
基金financially supported by the National Key R&D Program of China(No.2021YFB3802800)the National Natural Science Foundation of China(Nos.52222104,12261160364,51871120,52201190 and 51520105001)+6 种基金the Natural Science Foundation of Jiangsu Province(No.BK20200019)the support by Shenzhen Science and Technology Innovation Commission(No.JCYJ202000109105618137)the support by Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technologythe support of Shenzhen Science and Technology Innovation Committee(No.JCYJ20170413140446951)partial support by the Research Grants Council of the Hong Kong Special Administrative Region(No.CityU173/22)the support of the Youth Innovation Promotion Association,CAS(No.2020010)This research used the resources of the Advanced Photon Source,a US Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory(No.DE-AC02-06CH11357)。
文摘A study of the phase transformation process of a Fe-Ni-B-Si-P-Nb metallic glass using a suite of advanced characterization tools is reported.Transmission electron microscopy(TEM)and small angle neutron scattering(SANS)experiments show that the as-spun metallic glass ribbon has a dual-phase structure with bcc nanoclusters of a size of 2-3 nm.In situ high-energy X-ray diffraction(XRD)reveals a three-stage crystallization process when heating the metallic glass into supercooled liquid states.The isothermal annealing experiment shows the nanoclusters grow instantly without incubation.The easy formation and phase stability of the nanoclusters are due to the low interfacial energy between the amorphous matrix and clusters,as real space analysis shows that the nanoclusters and the amorphous matrix share similar short-to-mediumrange orders.We further find that the dual-phase structure reduces local magneto-anisotropy and enhances effective magnetic permeability,resulting in an excellent stressimpedance effect without sacrificing coercivity.Our work sheds light on the structure-property engineering of soft magnetic metallic glasses and provides a foundation for developing novel magnetic functional materials with nanostructured dual-phases.
基金financially supported by the National Key R&D Program of China (No.2021YFB3802800)the National Natural Science Foundation of China (Nos.51871120 and 51571170)+6 种基金the Fundamental Research Funds for the Central Universities (Nos.30919011107 and 30919011404)the Natural Science Foundation of Jiangsu Province (No.BK20200019)Shenzhen Fundamental Research Program (No. JCYJ20200109105618137)the support by Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technologythe support by Shenzhen Science and Technology Innovation Committee (No.JCYJ20170413140446951)the Ministry of Science and Technology of China (No.2016YFA0401501)the financial support of the Deutsche Forschungsgemeinschaft (No.HA 1344/46-1)
文摘When an equiatomic multi-component alloy is quenched from its molten state down to room temperature,either a solid solution crystalline alloy or a metallic glass is formed.The former is called a high-entropy alloy,whereas the latter is referred as a high-entropy metallic glass(HE-MG).In such multicomponent alloys,thermodynamic parame-ters,e.g.,the mixing entropy,the mixing enthalpy and other parameters such as atomic size mismatch,determine the resulting phases.