Designed ZrxSi1-xO2 films with combining bent and flat energy bands are employed as a charge trapping layer for memory capacitors.Compared to a single bent energy band,the bandgap structure with combining bent and fla...Designed ZrxSi1-xO2 films with combining bent and flat energy bands are employed as a charge trapping layer for memory capacitors.Compared to a single bent energy band,the bandgap structure with combining bent and flat energy bands exhibits larger memory window,faster program/erase speed,lower charge loss even at 200℃ for 104s,and wider temperature insensitive regions.The tunneling thickness together with electron recaptured efficiency in the trapping layer,and the balance of two competing electron loss mechanisms in the bent and flat energy band regions collectively contribute to the improved memory characteristics.Therefore,the proposed ZrxSi1-xO2 with combining bent and flat energy bands should be a promising candidate for future nonvolatile memory applications,taking into consideration of the trade-off between the operation speed and retention characteristics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51402004)the Science and Technology Research Key Project of Education Department of Henan Province of China(Grant No.19A140001)。
文摘Designed ZrxSi1-xO2 films with combining bent and flat energy bands are employed as a charge trapping layer for memory capacitors.Compared to a single bent energy band,the bandgap structure with combining bent and flat energy bands exhibits larger memory window,faster program/erase speed,lower charge loss even at 200℃ for 104s,and wider temperature insensitive regions.The tunneling thickness together with electron recaptured efficiency in the trapping layer,and the balance of two competing electron loss mechanisms in the bent and flat energy band regions collectively contribute to the improved memory characteristics.Therefore,the proposed ZrxSi1-xO2 with combining bent and flat energy bands should be a promising candidate for future nonvolatile memory applications,taking into consideration of the trade-off between the operation speed and retention characteristics.