It is economically desirable to develop a material that can simultaneously detect and recover uranium.Herein,a C=C-bridged two-dimensional metal-covalent organic framework(Cu-BTAN-AO MCOF)was constructed by condensati...It is economically desirable to develop a material that can simultaneously detect and recover uranium.Herein,a C=C-bridged two-dimensional metal-covalent organic framework(Cu-BTAN-AO MCOF)was constructed by condensation of metal single crystals with a rigid structure(Cu3(PyCA)3)and cyano monomers(BTAN)via Knoevenagel reaction for simultaneous detection and adsorption of uranium.The amidoxime group within the pore and the presence of unsaturated Cu(I)in the framework facilitate the adsorption of uranyl ions onto the amidoxime group,leading to fluorescence quenching via the photoinduced electron transfer(PET)mechanism,achieving a detection limit of as low as 167 nM uranyl ions.Furthermore,Cu-BTAN-AO demonstrates exceptional efficiency in capturing uranium from wastewater characterized by rapid kinetics and superior selectivity.It is noteworthy that Cu-BTAN-AO is the first example of simultaneous detection,adsorption and chemical reduction of uranium using metal centers and functional groups in MCOF,indicating that Cu-BTAN-AO has great potential for the detection and recovery of uranium-containing wastewater.This design strategy may also be applicable to advancing sensing and energy materials for other important metal ions.展开更多
基金the support from the National Natural Science Foundation of China(22036003,22176082,and 22376023)the Natural Science Foundation of Jiangxi Province(20232BBE50031).
文摘It is economically desirable to develop a material that can simultaneously detect and recover uranium.Herein,a C=C-bridged two-dimensional metal-covalent organic framework(Cu-BTAN-AO MCOF)was constructed by condensation of metal single crystals with a rigid structure(Cu3(PyCA)3)and cyano monomers(BTAN)via Knoevenagel reaction for simultaneous detection and adsorption of uranium.The amidoxime group within the pore and the presence of unsaturated Cu(I)in the framework facilitate the adsorption of uranyl ions onto the amidoxime group,leading to fluorescence quenching via the photoinduced electron transfer(PET)mechanism,achieving a detection limit of as low as 167 nM uranyl ions.Furthermore,Cu-BTAN-AO demonstrates exceptional efficiency in capturing uranium from wastewater characterized by rapid kinetics and superior selectivity.It is noteworthy that Cu-BTAN-AO is the first example of simultaneous detection,adsorption and chemical reduction of uranium using metal centers and functional groups in MCOF,indicating that Cu-BTAN-AO has great potential for the detection and recovery of uranium-containing wastewater.This design strategy may also be applicable to advancing sensing and energy materials for other important metal ions.