The dynamics of the high-speed vehicle(HSV) is partially or completely unknown because of various reasons, such as modeling errors, in-flight failure, and external disturbances. In this paper, a global stability rob...The dynamics of the high-speed vehicle(HSV) is partially or completely unknown because of various reasons, such as modeling errors, in-flight failure, and external disturbances. In this paper, a global stability robust fuzzy controller is designed to control the flight F-16 with uncertain perturbation. For the desired H_∞ output-feedback controllers, a necessary and sufficient condition of quadratic stability is derived with the well-established results of the Lyapunov stability theory and nonnegative matrix. The controllers not only guarantee the global asymptotically stability of the resultant closed-loop system with external disturbance and parameter perturbation, but also have a desired H∞ performance in a large flight envelop(LFE).展开更多
基金supported by the Shanghai Aerospace Science and Technology Innovation Fund under Grant No.SAST2015085
文摘The dynamics of the high-speed vehicle(HSV) is partially or completely unknown because of various reasons, such as modeling errors, in-flight failure, and external disturbances. In this paper, a global stability robust fuzzy controller is designed to control the flight F-16 with uncertain perturbation. For the desired H_∞ output-feedback controllers, a necessary and sufficient condition of quadratic stability is derived with the well-established results of the Lyapunov stability theory and nonnegative matrix. The controllers not only guarantee the global asymptotically stability of the resultant closed-loop system with external disturbance and parameter perturbation, but also have a desired H∞ performance in a large flight envelop(LFE).