期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Cross-linked Polyethylene with Recyclability and Mechanical Robustness Enabled by Establishment of Multiple Hydrogen Bonds Network via Reactive Melt Blending
1
作者 Hong-Da Mao Ting-Ting Zhang +4 位作者 zhen-you guo Dong-Yu Bai Jie Wang Hao Xiu Qiang Fu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第7期1104-1114,共11页
Physical cross-linking by hydrogen-bonds (H-bonds), providing a good combination of application properties of thermosets and processability of thermoplastics, is a potential strategy to resolve the recycling problem o... Physical cross-linking by hydrogen-bonds (H-bonds), providing a good combination of application properties of thermosets and processability of thermoplastics, is a potential strategy to resolve the recycling problem of traditional chemically cross-linked polyethylene. However, ureidopyrimidone (UPy), the most widely used H-bonding motif, is unfavorable for large-scale industrial application due to its poor thermal stability. In this work, H-bonds cross-linked polyethylene was successfully prepared by reactive melt blending maleic anhydride grafted polyethylene (PE-g-MAH) with 3-amino-1,2,4-triazole (ATA) to form amide triazole ring-carboxylic acid units. Triazole ring can easily generate multiple H-bonds with carboxylic acid and amide. More importantly, these units are more thermal stable than UPy due to the absence of unstable urea group of UPy. The introduction of H-bonds cross-linking leads to an obvious improvement in mechanical properties and creep resistance and a good maintain in thermal properties and recyclability. Furthermore, the reinforcement effect monotonically improves with increasing the density of H-bonds. The obtained good properties are mainly attributed to largely enhanced interchain interactions induced by H-bonds cross-linking and intrinsic reversibility of H-bonds. This work develops a novel way for the simple fabrication of H-bonds cross-linked PE with high performance through reactive melt blending. 展开更多
关键词 Cross-linked polyethylene Hydrogen bonds RECYCLABILITY
原文传递
Improving Impact Toughness of Polylactide/Ethylene-co-vinyl-acetate Blends via Adding Fumed Silica Nanoparticles:Effects of Specific Surface Area-dependent Interfacial Selective Distribution of Silica 被引量:2
2
作者 Ting-Ting Zhang Mei-Xi Zhou +6 位作者 zhen-you guo You-Bo Zhao Di Han Hao Xiu Hong-Wei Bai Qin Zhang Qiang Fu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第8期1040-1049,I0008,共11页
Adding fumed silica(Si0_(2))has been considered as an effective method for tailoring the phase morphology and performance of elastomer-toughened plastic binary blends.It has been demonstrated that the selective distri... Adding fumed silica(Si0_(2))has been considered as an effective method for tailoring the phase morphology and performance of elastomer-toughened plastic binary blends.It has been demonstrated that the selective distribution of SiO_(2) plays a decisive role in the mechanical properties of plastic/elastomer/SiO_(2)nanocomposites,especially for the impact toughness.In this work,we aim to illuminate the role of specific surface area in controlling their selective distribution of fumed SiO_(2) and consequent mechanical properties of plastic/elastomer binary blends.Three types of SiO_(2) with different specific surface areas were incorporated into polylactide/ethylene-co-vinyl-acetate(PLA/EVA)model blends by melt blending directly.It was found that the selective distribution of SiO_(2) is largely determined by their specific surface areas,i.e.SiO_(2) nanoparticles with low specific surface area has a stronger tendency to be located at the interface between PLA matrix and EVA dispersed phase as compared to those with high specific surface area.The specific surface area-dependent interfacial selective distribution of SiO_(2) is mainly attributed to the extent of increased viscosity of EVA dispersed phase in which SiO_(2)nanoparticles are initially dispersed and resultant migration rate of SiO_(2) nanoparticles.The interfacial localized SiO_(2) nanoparticles induce an obvious enhancement in the impact toughness with strength and modulus well maintained.More importantly,in the case of the same interfacial distribution,toughening efficiency is increased with the specific surface area of SiO_(2).Therefore,this is an optimum specific surface area of SiO_(2) for the toughening.This work not only provides a novel way to manipulate the selective distribution of SiO_(2) in elastomer-toughened plastic blends toward high-performance,but also gives a deep insight into the role of interfacial localized nanoparticles in the toughening mechanism. 展开更多
关键词 Fumed silica Specific surface area Selective distribution POLYLACTIDE Impact toughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部