The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from t...The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.展开更多
In this study, a time semi-discrete Crank-Nicolson (CN) formulation with second-order time accu- racy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete sta...In this study, a time semi-discrete Crank-Nicolson (CN) formulation with second-order time accu- racy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite element (SCNMFE) formulation based on two local Gauss integrals and parameter- free with the second-order time accuracy is established directly from the time semi-discrete CN formulation. Thus, it could avoid the discussion for semi-discrete SCNMFE formulation with respect to spatial variables and its theoretical analysis becomes very simple. Finaly, the error estimates of SCNMFE solutions are provided.展开更多
基金the National Natural Science Foundation of China(Grant Nos.10471100,40437017,and 60573158)Beijing Jiaotong University Science and Technology Foundation
文摘The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11671106the cultivation fund of the National Natural and Social Science Foundations in BTBU under Grant No.LKJJ2016-22
文摘In this study, a time semi-discrete Crank-Nicolson (CN) formulation with second-order time accu- racy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite element (SCNMFE) formulation based on two local Gauss integrals and parameter- free with the second-order time accuracy is established directly from the time semi-discrete CN formulation. Thus, it could avoid the discussion for semi-discrete SCNMFE formulation with respect to spatial variables and its theoretical analysis becomes very simple. Finaly, the error estimates of SCNMFE solutions are provided.