A thin film TiO2 in hierarchical nano-structure with high photocatalytic activities was synthesized in simple steps with ultrasonication. The crystal structure and morphology of the photocatalyst were investigated by ...A thin film TiO2 in hierarchical nano-structure with high photocatalytic activities was synthesized in simple steps with ultrasonication. The crystal structure and morphology of the photocatalyst were investigated by X-ray diffraction (XRD) and high-resolution field emission scanning electron microscope (FE-SEM). In the present work, nanostructured TiO2 was directly formed onto a Ti substrate via a solution approach. This nanostructured TiO2 photocatalyst can be reused and will not generate secondary contamination to treated water. The photocatalytic activity of the synthesized TiO2 photocatalyst was evaluated by the degradation of phenol under UVC irradiation in water and was compared with the general sol-gel derived TiO2 films as well as a commercial DP-25 TiO2 coating. It was found that the synthesized nanostructured TiO2has significantly high and stable photocatalytic activity.展开更多
ZnO/TiO_(2)composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange(MO)in aqueous s...ZnO/TiO_(2)composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange(MO)in aqueous suspension under UV irradiation.The composition and surface structure of the catalyst were characterized by X-ray diffraction(XRD),field emission scanning electron microscope(FE-SEM),and transmission electron microscopy(TEM).The degradation efficiencies of MO at various pH values were obtained.The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0,respectively.A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry.Six intermediates were found during the photocatalytic degradation process of quinonoid MO.The degradation pathway of quinonoid MO was also proposed.展开更多
文摘A thin film TiO2 in hierarchical nano-structure with high photocatalytic activities was synthesized in simple steps with ultrasonication. The crystal structure and morphology of the photocatalyst were investigated by X-ray diffraction (XRD) and high-resolution field emission scanning electron microscope (FE-SEM). In the present work, nanostructured TiO2 was directly formed onto a Ti substrate via a solution approach. This nanostructured TiO2 photocatalyst can be reused and will not generate secondary contamination to treated water. The photocatalytic activity of the synthesized TiO2 photocatalyst was evaluated by the degradation of phenol under UVC irradiation in water and was compared with the general sol-gel derived TiO2 films as well as a commercial DP-25 TiO2 coating. It was found that the synthesized nanostructured TiO2has significantly high and stable photocatalytic activity.
基金the Doctoral Fund of Ministry of Education of China(Grant No.200800550011)the Chinese Academy for Environmental Planning(Grant No.2008AW01).
文摘ZnO/TiO_(2)composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange(MO)in aqueous suspension under UV irradiation.The composition and surface structure of the catalyst were characterized by X-ray diffraction(XRD),field emission scanning electron microscope(FE-SEM),and transmission electron microscopy(TEM).The degradation efficiencies of MO at various pH values were obtained.The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0,respectively.A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry.Six intermediates were found during the photocatalytic degradation process of quinonoid MO.The degradation pathway of quinonoid MO was also proposed.