A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimi...A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.展开更多
The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods ha...The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods have achieved significant improvements in image super-resolution(SR),current CNNbased techniques mainly contain massive parameters and a high computational complexity,limiting their practical applications.In this paper,we present a fast and lightweight framework,named weighted multi-scale residual network(WMRN),for a better tradeoff between SR performance and computational efficiency.With the modified residual structure,depthwise separable convolutions(DS Convs)are employed to improve convolutional operations’efficiency.Furthermore,several weighted multi-scale residual blocks(WMRBs)are stacked to enhance the multi-scale representation capability.In the reconstruction subnetwork,a group of Conv layers are introduced to filter feature maps to reconstruct the final high-quality image.Extensive experiments were conducted to evaluate the proposed model,and the comparative results with several state-of-the-art algorithms demonstrate the effectiveness of WMRN.展开更多
Near Infrared spectroscopy(NIRS)has been widely used in the discrimination(classification)of pharmaceutical drugs.In real applications,however,the class imbalance of the drug samples,i.e.,the number of one drug sample...Near Infrared spectroscopy(NIRS)has been widely used in the discrimination(classification)of pharmaceutical drugs.In real applications,however,the class imbalance of the drug samples,i.e.,the number of one drug sample may be much larger than the number of the other drugs,deceasesdrastically the discrimination performance of the classification models.To address this classimbalance problem,a new computational method--the scaled convex hull(SCH)-basedmaximum margin classifier is proposed in this paper.By a suitable selection of the reductionfactor of the SCHs generated by the two classes of drug samples,respectively,the maximalmargin classifier bet ween SCHs can be constructed which can obtain good classification per-formance.With an optimization of the parameters involved in the modeling by Cuckoo Search,a satisfied model is achieved for the classification of the drug.The experiments on spectra samplesproduced by a pharmaceutical company show that the proposed method is more effective androbust than the existing ones.展开更多
基金supported by the National Natural Science Foundation of China(6076600161105004)+1 种基金the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ14110)the Program for Innovative Research Team of Guilin University of Electronic Technology(IRTGUET)
文摘A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.
基金the National Natural Science Foundation of China(61772149,61866009,61762028,U1701267,61702169)Guangxi Science and Technology Project(2019GXNSFFA245014,ZY20198016,AD18281079,AD18216004)+1 种基金the Natural Science Foundation of Hunan Province(2020JJ3014)Guangxi Colleges and Universities Key Laboratory of Intelligent Processing of Computer Images and Graphics(GIIP202001).
文摘The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods have achieved significant improvements in image super-resolution(SR),current CNNbased techniques mainly contain massive parameters and a high computational complexity,limiting their practical applications.In this paper,we present a fast and lightweight framework,named weighted multi-scale residual network(WMRN),for a better tradeoff between SR performance and computational efficiency.With the modified residual structure,depthwise separable convolutions(DS Convs)are employed to improve convolutional operations’efficiency.Furthermore,several weighted multi-scale residual blocks(WMRBs)are stacked to enhance the multi-scale representation capability.In the reconstruction subnetwork,a group of Conv layers are introduced to filter feature maps to reconstruct the final high-quality image.Extensive experiments were conducted to evaluate the proposed model,and the comparative results with several state-of-the-art algorithms demonstrate the effectiveness of WMRN.
基金funded by the National Nat ural Science Foundation of China(Grant Nos.61105004,61071136and 21365008)Natural Science Foundation of Guangxi(Grant No.2013GXNSFBA019279)Innovation Project of GUET Graduate Education(No.ZYC0725).
文摘Near Infrared spectroscopy(NIRS)has been widely used in the discrimination(classification)of pharmaceutical drugs.In real applications,however,the class imbalance of the drug samples,i.e.,the number of one drug sample may be much larger than the number of the other drugs,deceasesdrastically the discrimination performance of the classification models.To address this classimbalance problem,a new computational method--the scaled convex hull(SCH)-basedmaximum margin classifier is proposed in this paper.By a suitable selection of the reductionfactor of the SCHs generated by the two classes of drug samples,respectively,the maximalmargin classifier bet ween SCHs can be constructed which can obtain good classification per-formance.With an optimization of the parameters involved in the modeling by Cuckoo Search,a satisfied model is achieved for the classification of the drug.The experiments on spectra samplesproduced by a pharmaceutical company show that the proposed method is more effective androbust than the existing ones.