期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental Study on Ratio and Performance of Coal Gangue/Bottom Ash Geopolymer Double-Liquid Grouting Material
1
作者 Wenqi Zhao Wenbin Sun +1 位作者 zhenbo cao Jianbang Hao 《Journal of Renewable Materials》 EI 2023年第7期3073-3089,共17页
Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from minin... Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material. 展开更多
关键词 Coal gangue municipal solid waste sodium silicate double liquid grouting material
下载PDF
Synthesis and Characterization of Triarylamine-Based Block Copolymers by Combination of C-N Coupling and ATRP for Photorefractive Applications
2
作者 zhenbo cao Kousuke Kousuke Tsuchiy +1 位作者 Takeshi Shimomura Kenji Ogino 《Open Journal of Organic Polymer Materials》 2012年第4期53-62,共10页
Poly(4-butyltriarylamine)s with t-butyldimethylsilyl terminal protecting group (PBTPA-TBS) with various molecular weights were prepared by C-N coupling polymerization. The resulting precursors were postfunctionalized ... Poly(4-butyltriarylamine)s with t-butyldimethylsilyl terminal protecting group (PBTPA-TBS) with various molecular weights were prepared by C-N coupling polymerization. The resulting precursors were postfunctionalized and subse- quently used as macroinitiators for atom transfer radial polymerization (ATRP) of n-butyl acrylate (n-BA) and ethyl acrylate (EA). Both the polymerization processes were controlled and the polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and thermal properties, which confirmed the successful synthesis of all the poly-mers. The microphase separated behaviors of the poly (4-butyltriarylamine)-block-poly (butyl acrylate) (PBTPA-b-PBA) were examined by AFM in the film showing phase separation structures for all the polymers. The photorefractive property of the composite based on PBTPA-b-PBA block copolymer was evaluated by two-beam coupling experiment. A relative high gain coefficient of 42.7 cm?1 was obtained at the electric field of 31 V/?m. 展开更多
关键词 C-N Coupling ATRP TRIARYLAMINE ACRYLATE ESTER PHOTOREFRACTIVITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部