期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Detection of a mud volcano in the Weitan Banks area of the northern South China Sea
1
作者 Wei LUO Pin YAN +4 位作者 Yanlin WANG Junhui YU Qionghua WAN zhenbo zhang Tao XUE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1450-1469,共20页
Situated between the petroliferous Cenozoic Zhujiang(Pearl)River Mouth Basin and the mud volcano-rich Mesozoic Dongsha Basin in the middle sector of the northern South China Sea,the Weitan Banks area has been previous... Situated between the petroliferous Cenozoic Zhujiang(Pearl)River Mouth Basin and the mud volcano-rich Mesozoic Dongsha Basin in the middle sector of the northern South China Sea,the Weitan Banks area has been previously mapped as a basement high that is composed of Mesozoic magmatic rocks.In this study,we present several favorable indicators for petroleum geology that were detected from geophysical profiling and benthic sampling in the area.A conspicuous hill was discovered,named“Zhongwei Hill”,~80 m high above the~340 m deep seafloor and~1 km broad,in a depression with more than 7 km thick sedimentary strata.The Zhongwei Hill was seismically imaged with a mushroom-shaped structure and containing a cake-like crown,fluid flow pipes,and an~10 km broad anticline at depth.Thus,the hill represents a source-plumbing-eruption system.Shallow gas zones linked to deep fracture were found at or near the hill.Stratigraphic correlation indicates that the deep strata comprise the Jurassic and Paleogene strata,the major hosts of hydrocarbon source rocks.In addition to the hill,there are number of mounds from which three bottom water samples were collected and the samples are rich in dissolved methane with concentrations high up to~900 nmol/L,much higher than the background level(0.5–2 nmol/L).The benthic samples are rich in coarse sediment clastics,authigenic carbonate nodules,and deep-water habitats likely feeding on methanotrophic community.Given these observations and the context,we propose that the Zhongwei Hill represents a mud volcano,likely thermally driven,that seeps methane from Jurassic and Paleogene source layers,thus poses a favorable clue for significant hydrocarbon generation capacity in transitional zone of the Zhujiang River Mouth Basin and the Dongsha Basin. 展开更多
关键词 South China Sea Zhongwei Hill deep-level anticline mud volcano Mesozoic source layer hydrocarbon generation
下载PDF
从逐底竞争到策略性模仿——绩效考核生态化如何影响地方政府环境治理的竞争策略? 被引量:27
2
作者 张振波 《公共行政评论》 CSSCI 北大核心 2020年第6期114-131,211,212,共20页
【问题】随着约束性生态指标被纳入官员考核体系和环保考核“一票否决制”的确立,环境治理绩效日益成为地方官员晋升的关键要素。绩效考核的生态化转变对地方政府间环境规制执行有何影响?生态考核具体指标设置的差异性,是否会最终呈现... 【问题】随着约束性生态指标被纳入官员考核体系和环保考核“一票否决制”的确立,环境治理绩效日益成为地方官员晋升的关键要素。绩效考核的生态化转变对地方政府间环境规制执行有何影响?生态考核具体指标设置的差异性,是否会最终呈现为区域环境治理的不同绩效表现?【方法】论文基于2000—2016年间中国30个省级行政单位的数据,采用空间计量实证分析方法(SAC模型),分别以环境规制强度(排污费征收)和污染物排放(SO 2和CO 2)为因变量进行数据分析。【发现】地方政府的减排绩效对中央考核地方官员所设定的生态指标表现出高度敏感性。各省在执行环境规制和落实减排责任时具有空间关联性,经济发展水平越相近的省份之间呈现出更强的模仿效应。【贡献】地方政府间环境治理的竞争态势正在由逐底竞争转变为策略性模仿,而这一竞争策略与官员拔擢考核指标的变化密切相关。本研究为推动地方政府致力于协调统一的环境治理行动明确了政策方向:基于官员拔擢环保考核的目标治理机制能够避免环境治理分权中的政策执行阻梗,而这一纵向激励须以环境共治中的区域协调机制作为保障;另外,推动经济高质量发展、区域发展模式转型及环保技术创新扩散等也是实现整体性环境治理的必要内容。 展开更多
关键词 环保考核 环境治理 策略性竞争 空间计量
下载PDF
A Comparison of Error Correction Models for Student’s Error Codes Based on Deep Learning 被引量:1
3
作者 Tao Lin Jian Wang +2 位作者 Qifan Jian Zhiming Wu zhenbo zhang 《计算机教育》 2022年第12期137-142,共6页
Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptab... Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptability of fixing techniques may vary for different types of code errors.How to choose the appropriate methods to fix different types of errors is still an unsolved problem.To this end,this paper first classifies code errors by Java novice programmers based on Delphi analysis,and compares the effectiveness of different deep learning models(CuBERT,GraphCodeBERT and GGNN)fixing different types of errors.The results indicated that the 3 models differed significantly in their classification accuracy on different error codes,while the error correction model based on the Bert structure showed better code correction potential for beginners’codes. 展开更多
关键词 Deep learning Code error correction Code error classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部