Artemia embryos can endure extreme temperature, long-term anoxia, desiccation and other wide variety of stressful conditions. How the embryos survive these stresses is a very interesting and unsolved subject. To solve...Artemia embryos can endure extreme temperature, long-term anoxia, desiccation and other wide variety of stressful conditions. How the embryos survive these stresses is a very interesting and unsolved subject. To solve this question we analyzed the nucleotide and deduced protein sequence for Hsp26, a molecular chaperone specific to Artemia embryo development, cDNAs of Hsp26 were sequenced from eight Artemia species and deduced Hsp26 amino acid sequences were analyzed. Computer-assisted analysis indicated that the 5'-untranslated region and all the 3 introns contain many putative cis-acting elements for Hsp26 gene expression during development, including heat shock elements (HSEs), Dfd, dl, CF2-II, Hb and AP-1 binding sites. Secondary structure of the Hsp26 3'-untranslated terminator contains the basic structure basis for transcriptional termination. Hsp26 shares sequence similarity with sHSPs (small heat shock protein) from other organisms. The physico-chemical properties of the deduced protein, such as theoretical molecular weight, protein extinction coefficient, isoelectric point and antigenic sites were also obtained. One seven-peptide nuclear localization signals (NLS) "PFRRRMM" was found, which suggested that the Hsp26 protein was hypothesized to be located inside the nucleus. The numbers of phosphorylation sites of serine, threonine and tyrosine and kinase specific phosphorylation sites are also located in Hsp26 protein sequence. These studies will help us achieve a better understanding of Hsp26 and broad implications for sHSPs function in crustacean embryo development.展开更多
Vanadium redox flow battery(VRB),as the most promising large-scale electrical energy storage units,has attracted extensive attention.Amphoteric ion exchange membrane(AIEM),as the core part of VRB,separates electrolyte...Vanadium redox flow battery(VRB),as the most promising large-scale electrical energy storage units,has attracted extensive attention.Amphoteric ion exchange membrane(AIEM),as the core part of VRB,separates electrolyte on both sides of electrolytic tank and conducts H+.The AIEM with cation and anion groups possesses excellent performances,such as high ion conductivity(σ),low vanadium ion permeability(Pvn+),relative stability and low cost.However,the performance of AIEM directly depends on the chemical structure of polymers.In addition to ensuring foundational physical performance,ion selectivity of AIEM is significant since the crossover of vanadium ion with various valences may reduce the battery capacity.In this paper,AIEMs for VRB and their chemical structures as well as synthesis approaches to realize all kinds of high-performing AIEMs are reviewed.The current trend and future direction of prospective materials for the VRB separators are documented in detail as well.展开更多
文摘Artemia embryos can endure extreme temperature, long-term anoxia, desiccation and other wide variety of stressful conditions. How the embryos survive these stresses is a very interesting and unsolved subject. To solve this question we analyzed the nucleotide and deduced protein sequence for Hsp26, a molecular chaperone specific to Artemia embryo development, cDNAs of Hsp26 were sequenced from eight Artemia species and deduced Hsp26 amino acid sequences were analyzed. Computer-assisted analysis indicated that the 5'-untranslated region and all the 3 introns contain many putative cis-acting elements for Hsp26 gene expression during development, including heat shock elements (HSEs), Dfd, dl, CF2-II, Hb and AP-1 binding sites. Secondary structure of the Hsp26 3'-untranslated terminator contains the basic structure basis for transcriptional termination. Hsp26 shares sequence similarity with sHSPs (small heat shock protein) from other organisms. The physico-chemical properties of the deduced protein, such as theoretical molecular weight, protein extinction coefficient, isoelectric point and antigenic sites were also obtained. One seven-peptide nuclear localization signals (NLS) "PFRRRMM" was found, which suggested that the Hsp26 protein was hypothesized to be located inside the nucleus. The numbers of phosphorylation sites of serine, threonine and tyrosine and kinase specific phosphorylation sites are also located in Hsp26 protein sequence. These studies will help us achieve a better understanding of Hsp26 and broad implications for sHSPs function in crustacean embryo development.
基金the National Natural Science Foundation of China(Nos.51503187,21504037 and 51603194)the National key R&D Project(No.2016YFE0102700)+3 种基金the Shanxi provincial foundation for science and technology research(Nos.201601D021058,201701D221050,20181101006,20181102019)Partial support is also from the NIMHD-RCMI grant number 5G12MD007595 from the National Institute of Minority HealthHealth Disparities and the NIGMS-BUILD(No.8UL1GM118967)National Science Foundation(No.1700429)。
文摘Vanadium redox flow battery(VRB),as the most promising large-scale electrical energy storage units,has attracted extensive attention.Amphoteric ion exchange membrane(AIEM),as the core part of VRB,separates electrolyte on both sides of electrolytic tank and conducts H+.The AIEM with cation and anion groups possesses excellent performances,such as high ion conductivity(σ),low vanadium ion permeability(Pvn+),relative stability and low cost.However,the performance of AIEM directly depends on the chemical structure of polymers.In addition to ensuring foundational physical performance,ion selectivity of AIEM is significant since the crossover of vanadium ion with various valences may reduce the battery capacity.In this paper,AIEMs for VRB and their chemical structures as well as synthesis approaches to realize all kinds of high-performing AIEMs are reviewed.The current trend and future direction of prospective materials for the VRB separators are documented in detail as well.