A multiple-legged robot is traditionally controlled by using its dynamic model.But the dynamic-model-based approach fails to acquire satisfactory performances when the robot faces rough terrains and unknown environmen...A multiple-legged robot is traditionally controlled by using its dynamic model.But the dynamic-model-based approach fails to acquire satisfactory performances when the robot faces rough terrains and unknown environments.Referring animals' neural control mechanisms,a control model is built for a quadruped robot walking adaptively.The basic rhythmic motion of the robot is controlled by a well-designed rhythmic motion controller(RMC) comprising a central pattern generator(CPG) for hip joints and a rhythmic coupler(RC) for knee joints.CPG and RC have relationships of motion-mapping and rhythmic couple.Multiple sensory-motor models,abstracted from the neural reflexes of a cat,are employed.These reflex models are organized and thus interact with the CPG in three layers,to meet different requirements of complexity and response time to the tasks.On the basis of the RMC and layered biological reflexes,a quadruped robot is constructed,which can clear obstacles and walk uphill and downhill autonomously,and make a turn voluntarily in uncertain environments,interacting with the environment in a way similar to that of an animal.The paper provides a biologically inspired architecture,with which a robot can walk adaptively in uncertain environments in a simple and effective way,and achieve better performances.展开更多
Needle insertion is a common surgical procedure used in diagnosis and treatment.The needle steering technologies make continuous developments in theoretical and practical aspects along with the in-depth research on ne...Needle insertion is a common surgical procedure used in diagnosis and treatment.The needle steering technologies make continuous developments in theoretical and practical aspects along with the in-depth research on needle insertion.It is necessary to summarize and analyze the existing results to promote the future development of theories and applications of needle insertion.Thus,a survey of the state of the art of research is presented on algorithms of needle steering techniques,the surgical robots and devices.Based on the analysis of the needle insertion procedure,the concept of needle steering is defined as a kinematics problem,which is to place the needle at the target and avoid the obstacles.The needle steering techniques,including the artificial potential field method and the nonholonomic model,are introduced to control the needles for improving the accuracy.Based on the quasi-static thinking,the virtual spring model and the cantilever-beam model are developed to calculate the amount of needle deflection and generate the needle path.The phantoms instead of the real tissue are used to verify the models mentioned in most of the experimentations.For the desired needle trajectories,the image-guided robotic devices and some novel needles are presented to achieve the needle steering.Finally,the challenges are provided involving the controllability of the long flexible needle and the properties of soft tissue.The results and investigations can be used for further study on the precision and accuracy of needle insertion.展开更多
Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation tec...Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation technique. Simulation results indicate that the CPG model exhibits complex dynamics, while each parameter has specifically definitive influence trends on the CPG output. These conclusions were applied to control a quadrupedal robot to walk in different gaits, clear obstacle, and walk up- and down-slope successfully.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50905012)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012JBM088)
文摘A multiple-legged robot is traditionally controlled by using its dynamic model.But the dynamic-model-based approach fails to acquire satisfactory performances when the robot faces rough terrains and unknown environments.Referring animals' neural control mechanisms,a control model is built for a quadruped robot walking adaptively.The basic rhythmic motion of the robot is controlled by a well-designed rhythmic motion controller(RMC) comprising a central pattern generator(CPG) for hip joints and a rhythmic coupler(RC) for knee joints.CPG and RC have relationships of motion-mapping and rhythmic couple.Multiple sensory-motor models,abstracted from the neural reflexes of a cat,are employed.These reflex models are organized and thus interact with the CPG in three layers,to meet different requirements of complexity and response time to the tasks.On the basis of the RMC and layered biological reflexes,a quadruped robot is constructed,which can clear obstacles and walk uphill and downhill autonomously,and make a turn voluntarily in uncertain environments,interacting with the environment in a way similar to that of an animal.The paper provides a biologically inspired architecture,with which a robot can walk adaptively in uncertain environments in a simple and effective way,and achieve better performances.
基金supported by National Natural Science Foundation of China (Grant Nos. 51165040,50775119)Visiting Scholar Foundation of Key Lab in University of China (Grant No. GZKF-201020)
文摘Needle insertion is a common surgical procedure used in diagnosis and treatment.The needle steering technologies make continuous developments in theoretical and practical aspects along with the in-depth research on needle insertion.It is necessary to summarize and analyze the existing results to promote the future development of theories and applications of needle insertion.Thus,a survey of the state of the art of research is presented on algorithms of needle steering techniques,the surgical robots and devices.Based on the analysis of the needle insertion procedure,the concept of needle steering is defined as a kinematics problem,which is to place the needle at the target and avoid the obstacles.The needle steering techniques,including the artificial potential field method and the nonholonomic model,are introduced to control the needles for improving the accuracy.Based on the quasi-static thinking,the virtual spring model and the cantilever-beam model are developed to calculate the amount of needle deflection and generate the needle path.The phantoms instead of the real tissue are used to verify the models mentioned in most of the experimentations.For the desired needle trajectories,the image-guided robotic devices and some novel needles are presented to achieve the needle steering.Finally,the challenges are provided involving the controllability of the long flexible needle and the properties of soft tissue.The results and investigations can be used for further study on the precision and accuracy of needle insertion.
文摘Based on Matsuoka's central pattern generator (CPG) model and taking quadruped as an example, the dynamics of CPG model was investigated through the single-parameter-analysis method and the numerical simulation technique. Simulation results indicate that the CPG model exhibits complex dynamics, while each parameter has specifically definitive influence trends on the CPG output. These conclusions were applied to control a quadrupedal robot to walk in different gaits, clear obstacle, and walk up- and down-slope successfully.