Harmful algal blooms(HABs) have led to extensive ecological and environmental issues and huge economic losses.Various HAB control techniques have been developed,and biological methods have been paid more attention.Alg...Harmful algal blooms(HABs) have led to extensive ecological and environmental issues and huge economic losses.Various HAB control techniques have been developed,and biological methods have been paid more attention.Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner,and kill or damage the algal cells.A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp.The culture conditions were optimized using a single-factor test method.Factors including carbon source,nitrogen source,temperature,initial pH value,rotational speed and salinity were studied.The results showed that the cultivation of the bacteria at 28℃ and 180 r min-1with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46.The optimal medium composition for strain DH46 was determined by means of uniform design experimentation,and the most important components influencing the cell density were tryptone,yeast extract,soluble starch,NaNO3 and MgSO4.When the following culture medium was used(tryptone 14.0g,yeast extract 1.63g,soluble starch 5.0 g,NaNO3 1.6 g,MgSO4 2.3 g in 1L),the largest bacterial dry weight(7.36 g L-1) was obtained,which was an enhancement of 107% compared to the initial medium;and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.展开更多
Aerobic anoxygenic phototrophic(AAP) bacteria serve important functions in marine carbon and energy cycling because of their capability to utilize dissolved organic substrates and harvest light energy.AAP bacteria a...Aerobic anoxygenic phototrophic(AAP) bacteria serve important functions in marine carbon and energy cycling because of their capability to utilize dissolved organic substrates and harvest light energy.AAP bacteria are widely distributed in marine environments,and their diversity has been examined in marine habitats.However,information about AAP bacteria at high latitudes remains insufficient to date.Therefore,this study determined the summer AAP bacterial diversity in Arctic Kongsfjorden and in the Antarctic coastal seawater of King George Island on the basis of puf M,a gene that encodes a pigment-binding protein subunit of the reaction center complex.Four puf M clone libraries were constructed,and 674 positive clones were obtained from four investigated stations(two in Kongsfjorden and two in the Antarctic Maxwell Bay).Arctic clones were clustered within the Alphaproteobacteria,whereas Antarctic clones were classified into the Alphaproteobacteria and Betaproteobacteria classes.Rhodobacteraceae-like puf M genes dominated in all samples.In addition,sequences closely related to puf M encoded on a plasmid in Sulfitobacter guttiformis were predominant in both Arctic and Antarctic samples.This result indicates the transpolar or even global distribution of puf M genes in marine environments.Meanwhile,differences between the Arctic and Antarctic sequences may prove polar endemism.These results indicate the important role of Rhodobacteraceae as AAP bacteria in bipolar coastal waters.展开更多
The authors have isolated and characterized a novel serine palmitoyltransferase (SPT)-like gene in marine Emiliania huxleyi virus (EhV-99B1). The open-reading frame (ORF) of EhV99BI-SPT encoded a protein of 496 ...The authors have isolated and characterized a novel serine palmitoyltransferase (SPT)-like gene in marine Emiliania huxleyi virus (EhV-99B1). The open-reading frame (ORF) of EhV99BI-SPT encoded a protein of 496 amino acids with a calculated molecular mass of 96 kDa and Ip 6.01. The results of sequence analysis showed that there was about 31% 45% identity in amino acid sequence with other organisms. The maximum likelihood phylogenetic tree suggested that the EhV99B1-SPT gene possibly horizontally transferred from the eukaryote. Hydrophobic profiles of deduced amino acid sequences suggested a hydrophobic, globular and membrane-associated protein with five transmembrane domains (TMDs) motifs. Several potential N-linked glycosylation sites were presented in SPT. These results suggested that EhV99BI-SPT was an integral endoplasmic reticulum membrane protein. Despite lower sequence identity, the secondary and three-dimensional structures predicted showed that the “pocket” structure element composed of 2a-helices and 4β- sheets was the catalytic center of this enzyme, with a typical conserved “TFTKSFG” active site in the N-terminal region and was very close to those of prokaryotic organisms. However, the N-terminal domain of EhV99B1-SPT most closely resembled the LCB2 catalysis subunit and the C-terminal domain most closely resembled the LCBI regulatory subunit of other organisms which together formed a spherical molecule. This “chimera” was highly similar to the prokaryotic homologous SPT. For a functional identification, the EhV99B1-LCB2 subunit gene was expressed in Escherichia coli, which resulted in significant accumulation of new sphingolipid in E. coli cells.展开更多
Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most pro...Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most productive calcifying organism on earth and becoming an important factor in the global carbonate cycle. Emiliania huxleyi is one of the only two bloom-forming coccolithophores and becomes a species crucial to the study of global biogeochemical cycles and climate modeling. Coccolithoviruse is a recently discovered group of viruses infecting the marine coceolithophorid E. huxleyi. They are a major cause of coceolithophore bloom termination, and DMSP concentration is increasing in the process of viral lysis. Phylogenetic evidences support that some genes are functional both in E. huxleyi and its virus (EhV). Horizontal gene transfer (HGT) of multiple functionally coupled enzymes occurs in E. huxleyi and its DNA virus EhV has been confirmed, which contributes to the diversification and adaptation of plankton in the oceans and also critically regulates virus-host infection by allowing viruses to control host metabolic pathways for their repli- cation. Therefore, it is of particular interest to understand this host-virus interaction. On this issue, we have made a minireview of coeeolithoviruses focusing on the basic characteristics, phylogenesis, horizontal gene transfer and the interaction between the host and its viruses, as well as its important role in global biogeochemical cycling.展开更多
The authors have investigated the biochemical events by which marine algal virus infection induces cell cycle arrest. The key G 2 /M-phase regulatory proteins are analyzed by immunobloting in unicel-lular Emiliania hu...The authors have investigated the biochemical events by which marine algal virus infection induces cell cycle arrest. The key G 2 /M-phase regulatory proteins are analyzed by immunobloting in unicel-lular Emiliania huxleyi,suggesting that virus induced cell cycle arrest is related with virus's effect on cyclins and cyclin dependent kinases. E. huxleyi virus(EhV) represses Cdc2/cyclinB complex activity by inhibiting the activity of Cdc2 kinase in a phosphorylation-related manner,blocking host cells G 2 /M checkpoint. Dephosphorylated /inactive Cdc25C combined with up-regulation of Wee1 expression at early infect period appears to be important mechanisms by which EhV represses Cdc2/cyclinB complex activity that is required for entry into M phase. This study has allowed us to confirm that algal virus infection leads to selective activation or inhibition of certain cell-cycle factors,which may play a significant role in establishing a more efficient environment for viral gene expression and DNA replication.展开更多
Seven stations were established in the Quanzhou Bay (24.73°-24.96°N, 118.50°-118.70°E) in China on three cruises to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and t...Seven stations were established in the Quanzhou Bay (24.73°-24.96°N, 118.50°-118.70°E) in China on three cruises to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the numbers of PAH-degrading bacteria in surface sediments. Assessing the biodegradation potential of indigenous microorganisms by measuring the respiratory intensity with the addition of PAHs in sediment samples was also one of the aims of this study. The results show that the total PAH concentrations of the sediments were 99.23-345.53 ng/g dry weight (d.w.), and the PAHs composition pattern in the sediments was dominated by phenanthrene, fluoranthene and pyrene. The numbers of phenanthrene, fluoranthene and pyrene-degrading bacteria during three cruises were 1.42×10^3-8.93×10^4 CFU/g d.w., 8.29×10^3 9.43×10^4 CFU/g d.w. and 7.05×10^3-9.43×10^4 CFU/g d.w., respectively. The addition of three model PAH compounds (phenanthrene, fluoranthene and pyrene) showed a great influence on the increasing of the microbial activity in the sediments. And there was a significant correlation among the change of respiratory activity, PAH concentration and the number of PAH-degrading bacteria. The change in respiratory activity under PAHs selective pressure could, to a certain extent, indicate the potential degradative activity of the PAH-degrading microbial community.展开更多
A set of 27 marine planktonic bacteria isolated from the polar regions was characterized by 16S rDNA sequencing and physiological and biochemical testing. More than half of these bacteria were positive for caseinase, ...A set of 27 marine planktonic bacteria isolated from the polar regions was characterized by 16S rDNA sequencing and physiological and biochemical testing. More than half of these bacteria were positive for caseinase, gelatinase and 13-glucosidase, and could utilize glucose, maltose or malic acid as carbon source for cell growth. Twelve isolates expressed nitrate reduction activities. Except for one antarctic isolate BSwlO175 belonging to Actinobacteria phylum, these isolates were classified as γ-Proteobacteria, suggesting that γ-Proteobacteria dominated in cultivable marine bacterioplankton at both poles. Genus Pseudoalteromonas was the predominant group in the Chukchi Sea and the Bering Sea, and genus ShewaneUa dominated in cultivable bacterioplankton in the Prydz Bay. With sequence similarities above 97%, genus Psychrobacter was found at both poles. These 27 isolates were psychrotolerant, and significant 16S rDNA sequence similarities were found not only between arctic and antarctic marine bacteria ( 〉 99% ), but also between polar marine bacteria and bacteria from other aquatic environments ( ≥ 98.8% ), including temperate ocean, deep sea, pond and lake, suggesting that in the polar oceans less temperature-sensitive bacteria may be cosmopolitan and have a bipolar, even global, distribution at the species level.展开更多
The evolutionary relationships and taxonomic position of two marine planktonic bacterial strains BSw20211 and BSwl0014, isolated from the Canada Basin and from the Southern Ocean, respectively, were determined using a...The evolutionary relationships and taxonomic position of two marine planktonic bacterial strains BSw20211 and BSwl0014, isolated from the Canada Basin and from the Southern Ocean, respectively, were determined using a polyphasic taxonomic approach. There was a close phylogenetic relationship between the two strains and most phenotypic properties were shared. Nonetheless, they were found to belong to different species of the genus Pseudoalteromonas on the basis of genotypic analyses. Findings were consistent with the suggestion that gyrB gene sequence comparison and DNA-DNA relatedness might better define phylogenetic relationships of bacteria at the species level. However, a cut-off value of 90% gyrB gene sequence similarity was not reliable for the differentiation of species within the genus Pseudoalteromonas.展开更多
基金financially supported by the National Natural Science Foundation(40930847,31070442)the Natural Science Foundation of Fujian Province(2012J01150)Public science and technology research funds projects of ocean(201305016,201305041,201305022) and MELRI1003
文摘Harmful algal blooms(HABs) have led to extensive ecological and environmental issues and huge economic losses.Various HAB control techniques have been developed,and biological methods have been paid more attention.Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner,and kill or damage the algal cells.A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp.The culture conditions were optimized using a single-factor test method.Factors including carbon source,nitrogen source,temperature,initial pH value,rotational speed and salinity were studied.The results showed that the cultivation of the bacteria at 28℃ and 180 r min-1with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46.The optimal medium composition for strain DH46 was determined by means of uniform design experimentation,and the most important components influencing the cell density were tryptone,yeast extract,soluble starch,NaNO3 and MgSO4.When the following culture medium was used(tryptone 14.0g,yeast extract 1.63g,soluble starch 5.0 g,NaNO3 1.6 g,MgSO4 2.3 g in 1L),the largest bacterial dry weight(7.36 g L-1) was obtained,which was an enhancement of 107% compared to the initial medium;and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.
基金The National Natural Science Foundation of China under contract Nos 41076131and 41476171the Chinese Polar Environment Comprehensive Investigation and Assessment Program under contract Nos CHINARE2015-02-01 and CHINARE2015-04-01
文摘Aerobic anoxygenic phototrophic(AAP) bacteria serve important functions in marine carbon and energy cycling because of their capability to utilize dissolved organic substrates and harvest light energy.AAP bacteria are widely distributed in marine environments,and their diversity has been examined in marine habitats.However,information about AAP bacteria at high latitudes remains insufficient to date.Therefore,this study determined the summer AAP bacterial diversity in Arctic Kongsfjorden and in the Antarctic coastal seawater of King George Island on the basis of puf M,a gene that encodes a pigment-binding protein subunit of the reaction center complex.Four puf M clone libraries were constructed,and 674 positive clones were obtained from four investigated stations(two in Kongsfjorden and two in the Antarctic Maxwell Bay).Arctic clones were clustered within the Alphaproteobacteria,whereas Antarctic clones were classified into the Alphaproteobacteria and Betaproteobacteria classes.Rhodobacteraceae-like puf M genes dominated in all samples.In addition,sequences closely related to puf M encoded on a plasmid in Sulfitobacter guttiformis were predominant in both Arctic and Antarctic samples.This result indicates the transpolar or even global distribution of puf M genes in marine environments.Meanwhile,differences between the Arctic and Antarctic sequences may prove polar endemism.These results indicate the important role of Rhodobacteraceae as AAP bacteria in bipolar coastal waters.
基金The National High Technology Research and Development Program of China under contract No. 2008AA09Z408Fujian Province Nature Science Foundation,China under contract No. 2010J01261the Foundation for Innovative Research Team of Jimei University,China under contract No. 2010A007
文摘The authors have isolated and characterized a novel serine palmitoyltransferase (SPT)-like gene in marine Emiliania huxleyi virus (EhV-99B1). The open-reading frame (ORF) of EhV99BI-SPT encoded a protein of 496 amino acids with a calculated molecular mass of 96 kDa and Ip 6.01. The results of sequence analysis showed that there was about 31% 45% identity in amino acid sequence with other organisms. The maximum likelihood phylogenetic tree suggested that the EhV99B1-SPT gene possibly horizontally transferred from the eukaryote. Hydrophobic profiles of deduced amino acid sequences suggested a hydrophobic, globular and membrane-associated protein with five transmembrane domains (TMDs) motifs. Several potential N-linked glycosylation sites were presented in SPT. These results suggested that EhV99BI-SPT was an integral endoplasmic reticulum membrane protein. Despite lower sequence identity, the secondary and three-dimensional structures predicted showed that the “pocket” structure element composed of 2a-helices and 4β- sheets was the catalytic center of this enzyme, with a typical conserved “TFTKSFG” active site in the N-terminal region and was very close to those of prokaryotic organisms. However, the N-terminal domain of EhV99B1-SPT most closely resembled the LCB2 catalysis subunit and the C-terminal domain most closely resembled the LCBI regulatory subunit of other organisms which together formed a spherical molecule. This “chimera” was highly similar to the prokaryotic homologous SPT. For a functional identification, the EhV99B1-LCB2 subunit gene was expressed in Escherichia coli, which resulted in significant accumulation of new sphingolipid in E. coli cells.
基金funded by the Chinese Public Science and Technology Research Funds Projects of Ocean (No. 201305027)the National Natural Science Foundation of China (Nos. 40930847, 41376119)+1 种基金Funds of China Southern Oceano-graphic Research Center (No. 14GZP71NF35)Funds of Provincial Key Laboratory of Food Microbiology and Enzyme Engineering (No. M20140910)
文摘Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most productive calcifying organism on earth and becoming an important factor in the global carbonate cycle. Emiliania huxleyi is one of the only two bloom-forming coccolithophores and becomes a species crucial to the study of global biogeochemical cycles and climate modeling. Coccolithoviruse is a recently discovered group of viruses infecting the marine coceolithophorid E. huxleyi. They are a major cause of coceolithophore bloom termination, and DMSP concentration is increasing in the process of viral lysis. Phylogenetic evidences support that some genes are functional both in E. huxleyi and its virus (EhV). Horizontal gene transfer (HGT) of multiple functionally coupled enzymes occurs in E. huxleyi and its DNA virus EhV has been confirmed, which contributes to the diversification and adaptation of plankton in the oceans and also critically regulates virus-host infection by allowing viruses to control host metabolic pathways for their repli- cation. Therefore, it is of particular interest to understand this host-virus interaction. On this issue, we have made a minireview of coeeolithoviruses focusing on the basic characteristics, phylogenesis, horizontal gene transfer and the interaction between the host and its viruses, as well as its important role in global biogeochemical cycling.
基金The National High Technology Research and Development Program of China under contract No. 2008AA09Z408the National Natural Science Foundation of China under contract Nos 40930847, 30940002 and 40876061+1 种基金Fujian Province Natural Science Foundation, China under contract No. 2010J01261the Foundation for Innovative Research Team of Jimei University, China under contract No. 2010A007
文摘The authors have investigated the biochemical events by which marine algal virus infection induces cell cycle arrest. The key G 2 /M-phase regulatory proteins are analyzed by immunobloting in unicel-lular Emiliania huxleyi,suggesting that virus induced cell cycle arrest is related with virus's effect on cyclins and cyclin dependent kinases. E. huxleyi virus(EhV) represses Cdc2/cyclinB complex activity by inhibiting the activity of Cdc2 kinase in a phosphorylation-related manner,blocking host cells G 2 /M checkpoint. Dephosphorylated /inactive Cdc25C combined with up-regulation of Wee1 expression at early infect period appears to be important mechanisms by which EhV represses Cdc2/cyclinB complex activity that is required for entry into M phase. This study has allowed us to confirm that algal virus infection leads to selective activation or inhibition of certain cell-cycle factors,which may play a significant role in establishing a more efficient environment for viral gene expression and DNA replication.
基金The National High Technology Research and Development Program ("863" Program) of China under contractNo. 2008AA09Z408the National Natural Science Foundation of China under contract No. 40576054+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University under contract No. 40821063the Science and Technology Foundationof Fujian Province, China under contract No. 2008Y0061
文摘Seven stations were established in the Quanzhou Bay (24.73°-24.96°N, 118.50°-118.70°E) in China on three cruises to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the numbers of PAH-degrading bacteria in surface sediments. Assessing the biodegradation potential of indigenous microorganisms by measuring the respiratory intensity with the addition of PAHs in sediment samples was also one of the aims of this study. The results show that the total PAH concentrations of the sediments were 99.23-345.53 ng/g dry weight (d.w.), and the PAHs composition pattern in the sediments was dominated by phenanthrene, fluoranthene and pyrene. The numbers of phenanthrene, fluoranthene and pyrene-degrading bacteria during three cruises were 1.42×10^3-8.93×10^4 CFU/g d.w., 8.29×10^3 9.43×10^4 CFU/g d.w. and 7.05×10^3-9.43×10^4 CFU/g d.w., respectively. The addition of three model PAH compounds (phenanthrene, fluoranthene and pyrene) showed a great influence on the increasing of the microbial activity in the sediments. And there was a significant correlation among the change of respiratory activity, PAH concentration and the number of PAH-degrading bacteria. The change in respiratory activity under PAHs selective pressure could, to a certain extent, indicate the potential degradative activity of the PAH-degrading microbial community.
基金National Basic Research Program of China under contract No. 2004CB719601 the National Natural Science Foundation of China under contract Nos 30200001 , 40676002 the National Science and Technology Ministry of China under contract No. 2003DEB5J057.
文摘A set of 27 marine planktonic bacteria isolated from the polar regions was characterized by 16S rDNA sequencing and physiological and biochemical testing. More than half of these bacteria were positive for caseinase, gelatinase and 13-glucosidase, and could utilize glucose, maltose or malic acid as carbon source for cell growth. Twelve isolates expressed nitrate reduction activities. Except for one antarctic isolate BSwlO175 belonging to Actinobacteria phylum, these isolates were classified as γ-Proteobacteria, suggesting that γ-Proteobacteria dominated in cultivable marine bacterioplankton at both poles. Genus Pseudoalteromonas was the predominant group in the Chukchi Sea and the Bering Sea, and genus ShewaneUa dominated in cultivable bacterioplankton in the Prydz Bay. With sequence similarities above 97%, genus Psychrobacter was found at both poles. These 27 isolates were psychrotolerant, and significant 16S rDNA sequence similarities were found not only between arctic and antarctic marine bacteria ( 〉 99% ), but also between polar marine bacteria and bacteria from other aquatic environments ( ≥ 98.8% ), including temperate ocean, deep sea, pond and lake, suggesting that in the polar oceans less temperature-sensitive bacteria may be cosmopolitan and have a bipolar, even global, distribution at the species level.
基金supported by the National Natural Science Foundation of China (Grant nos. 40676002, 40876097, 41076131)the National High Technology Research and Development Program of China (Grant no. 2008AA09Z408)+1 种基金 the Program for Changjiang Scholars and Innovative Research Team in the University (Grant no.40821063)China's Action Plan for the International Polar Year (IPY)
文摘The evolutionary relationships and taxonomic position of two marine planktonic bacterial strains BSw20211 and BSwl0014, isolated from the Canada Basin and from the Southern Ocean, respectively, were determined using a polyphasic taxonomic approach. There was a close phylogenetic relationship between the two strains and most phenotypic properties were shared. Nonetheless, they were found to belong to different species of the genus Pseudoalteromonas on the basis of genotypic analyses. Findings were consistent with the suggestion that gyrB gene sequence comparison and DNA-DNA relatedness might better define phylogenetic relationships of bacteria at the species level. However, a cut-off value of 90% gyrB gene sequence similarity was not reliable for the differentiation of species within the genus Pseudoalteromonas.