Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was f...Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was fabricated by shell mold casting.The finite element model and ProCAST software were utilized for simulating the filling and solidification processes of the casting;and the formation mechanism of the gas pore,and shrinkage porosity defects were analyzed.The results indicate that the gas pore and shrinkage porosity defects are formed due to air entrapment,insufficient feeding and non-sequential solidification.Subsequently,through changing the position of risers,adding a connecting channel between the risers,and setting blind risers at the U-shaped brackets,an optimized gating and feeding system was established to improve the quality of the casting.After optimization,the gas pore and shrinkage porosity defects of the leaf spring bracket casting are effectively eliminated.The experiment results with the optimized casting process are in good agreement with the numerical simulation,which verifies the validity of the finite element model in the shell mould casting.展开更多
The networks-on-chip (NoC) communication has an increasingly larger impact on the system power consumption and performance. Emerging technologies, like surface wave, are believed to have lower transmission latency a...The networks-on-chip (NoC) communication has an increasingly larger impact on the system power consumption and performance. Emerging technologies, like surface wave, are believed to have lower transmission latency and power consumption over the conventional wireless NoC. Therefore, this paper studies how to optimize the network performance and power consumption by giving the packet-switching fabric and traffic pattern of each application. Compared with the conventional method of wire-linked, which adds wireless transceivers by using the genetic algorithm (GA), the proposed maximal declining sorting algorithm (MDSA) can effectively reduce time consumption by as much as 20.4% to 35.6%. We also evaluate the power consumption and configuration time to prove the effective of the proposed algorithm.展开更多
基金financially supported by the Major Science and Technology Projects in Anhui Province (No. 18030901097)the Natural Science Foundation of Anhui Province (No.1908085QE197)the Fundamental Research Funds for the Central Universities (JZ2018HGBZ0133, JZ2019HGTA0043)
文摘Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was fabricated by shell mold casting.The finite element model and ProCAST software were utilized for simulating the filling and solidification processes of the casting;and the formation mechanism of the gas pore,and shrinkage porosity defects were analyzed.The results indicate that the gas pore and shrinkage porosity defects are formed due to air entrapment,insufficient feeding and non-sequential solidification.Subsequently,through changing the position of risers,adding a connecting channel between the risers,and setting blind risers at the U-shaped brackets,an optimized gating and feeding system was established to improve the quality of the casting.After optimization,the gas pore and shrinkage porosity defects of the leaf spring bracket casting are effectively eliminated.The experiment results with the optimized casting process are in good agreement with the numerical simulation,which verifies the validity of the finite element model in the shell mould casting.
基金supported by the National Natural Science Foundation of China under Grant No.61376024 and No.61306024the Natural Science Foundation of Guangdong Province under Grant No.S2013040014366Basic Research Program of Shenzhen No.JCYJ20140417113430642 and JCYJ20140901003939020
文摘The networks-on-chip (NoC) communication has an increasingly larger impact on the system power consumption and performance. Emerging technologies, like surface wave, are believed to have lower transmission latency and power consumption over the conventional wireless NoC. Therefore, this paper studies how to optimize the network performance and power consumption by giving the packet-switching fabric and traffic pattern of each application. Compared with the conventional method of wire-linked, which adds wireless transceivers by using the genetic algorithm (GA), the proposed maximal declining sorting algorithm (MDSA) can effectively reduce time consumption by as much as 20.4% to 35.6%. We also evaluate the power consumption and configuration time to prove the effective of the proposed algorithm.