Lithium-sulfur batteries(LSBs)have already developed into one of the most promising new-generation high-energy density electrochemical energy storage systems with outstanding features including high-energy density,low...Lithium-sulfur batteries(LSBs)have already developed into one of the most promising new-generation high-energy density electrochemical energy storage systems with outstanding features including high-energy density,low cost,and environmental friendliness.However,the development and commercialization path of LSBs still presents significant limitations and challenges,particularly the notorious shuttle effect triggered by soluble longchain lithium polysulfides(LiPSs),which inevitably leads to low utilization of cathode active sulfur and high battery capacity degradation,short cycle life,etc.Substantial research efforts have been conducted to develop various sulfur host materials capable of effectively restricting the shuttle effect.This review firstly introduces the fundamental electrochemical aspects of LSBs,followed by a comprehensive analysis of the mechanism underlying the shuttle effect in Li–S batteries and its profound influence on various battery components as well as the overall battery performance.Subsequently,recent advances and strategies are systematically reviewed,including physical confinement,chemisorption,and catalytic conversion of sulfur hosts for restricting LiPSs shuttle effects.The interplay mechanisms of sulfur hosts and LiPSs are discussed in detail and the structural advantages of different host materials are highlighted.Furthermore,key insights for the rational design of advanced host materials for LSBs are provided,and the upcoming challenges and the prospects for sulfur host materials in lithium-sulfur batteries are also explored.展开更多
Since Co_(2)VO_(4) possesses a solid spinel structure and a high degree of stability,it has gained interest as a possible anode material for sodium-ion batteries.However,the application of this electrode material is s...Since Co_(2)VO_(4) possesses a solid spinel structure and a high degree of stability,it has gained interest as a possible anode material for sodium-ion batteries.However,the application of this electrode material is still hampered by its poor electrical conductivity and severe volume expansion.Uniform Co_(2)VO_(4) nanoparticles(CVO)were grown on carbon nanotubes(CNTs)by a simple solvothermal method to form string-like conductive networks(CVO/CNTs).The flexible and highly conductive three-dimensional(3D)carbon nano tubes and small-sized CVO NPs can enhance the rapid transport of electrons,thereby enhancing the conductivity of the composite.String-like conductive network structures have a larger specific surface area,enhancing electron/ion transmission by fully contacting the electrolyte.The findings demonstrate the superior Na^(+)storing capability of the CVO/CNTs composite.The battery has a great rate performance(148.2 mAh·g^(-1)at 5 A·g^(-1))and outstanding long-term cycling performance(147.3 mAh·g^(-1)after 1000 cycles at 1A·g^(-1)).In high-rate,long-cycle sodium-ion batteries,CVO/CNTs composites offer a wide range of possible applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52105575&52205593)the Fundamental Research Funds for the Central Universities(No.QTZX23063)+1 种基金the Proof of Concept Foundation of Xidian University Hangzhou Institute of Technology(Nos.GNYZ2023YL0302&GNYZ2023QC0401)the Aeronautical Science Foundation of China(No.2022Z073081001)。
文摘Lithium-sulfur batteries(LSBs)have already developed into one of the most promising new-generation high-energy density electrochemical energy storage systems with outstanding features including high-energy density,low cost,and environmental friendliness.However,the development and commercialization path of LSBs still presents significant limitations and challenges,particularly the notorious shuttle effect triggered by soluble longchain lithium polysulfides(LiPSs),which inevitably leads to low utilization of cathode active sulfur and high battery capacity degradation,short cycle life,etc.Substantial research efforts have been conducted to develop various sulfur host materials capable of effectively restricting the shuttle effect.This review firstly introduces the fundamental electrochemical aspects of LSBs,followed by a comprehensive analysis of the mechanism underlying the shuttle effect in Li–S batteries and its profound influence on various battery components as well as the overall battery performance.Subsequently,recent advances and strategies are systematically reviewed,including physical confinement,chemisorption,and catalytic conversion of sulfur hosts for restricting LiPSs shuttle effects.The interplay mechanisms of sulfur hosts and LiPSs are discussed in detail and the structural advantages of different host materials are highlighted.Furthermore,key insights for the rational design of advanced host materials for LSBs are provided,and the upcoming challenges and the prospects for sulfur host materials in lithium-sulfur batteries are also explored.
基金financially supported by the National Key Research and Development Project (No.2018YFE0124800)the National Nature Science Foundation of China (No.51702157)。
文摘Since Co_(2)VO_(4) possesses a solid spinel structure and a high degree of stability,it has gained interest as a possible anode material for sodium-ion batteries.However,the application of this electrode material is still hampered by its poor electrical conductivity and severe volume expansion.Uniform Co_(2)VO_(4) nanoparticles(CVO)were grown on carbon nanotubes(CNTs)by a simple solvothermal method to form string-like conductive networks(CVO/CNTs).The flexible and highly conductive three-dimensional(3D)carbon nano tubes and small-sized CVO NPs can enhance the rapid transport of electrons,thereby enhancing the conductivity of the composite.String-like conductive network structures have a larger specific surface area,enhancing electron/ion transmission by fully contacting the electrolyte.The findings demonstrate the superior Na^(+)storing capability of the CVO/CNTs composite.The battery has a great rate performance(148.2 mAh·g^(-1)at 5 A·g^(-1))and outstanding long-term cycling performance(147.3 mAh·g^(-1)after 1000 cycles at 1A·g^(-1)).In high-rate,long-cycle sodium-ion batteries,CVO/CNTs composites offer a wide range of possible applications.