Four CrAlN coatings with various Al content were prepared by arc ion plating technology under different target currents. The effect of the Al content on the microstructure, chemical compositions, element chemical bond...Four CrAlN coatings with various Al content were prepared by arc ion plating technology under different target currents. The effect of the Al content on the microstructure, chemical compositions, element chemical bonding states and mechanical properties of the CrAlN coatings was analyzed. X-ray diffraction results show that the primary phase of the CrAlN coating is fcc-(Al, Cr)N when the Al content is about 44.02 at.%. However, when the Al content increases to about 53.34 at.%, hcp-AlN phase emerges in the coating. And the hcp-AlN phase becomes the main phase in the CrAlN coating with Al content of about 69.55 at.%. Cross-sectional images show that all the four coatings possess dense structures and the deposition rate of Al atom is higher than that of Cr atom. The hardness of the CrAlN coating with Al content about 44.02 at.% is the largest (3149.72 HV) due to the solid solution hardening effect of the Al element. When the hcp-AlN phase is generated in the CrAlN coating, the hardness declines. The tribological experiment shows that the wear resistance of the CrAlN coating decreases gradually with increasing Al content when sliding against 100Cr6 steel ball.展开更多
A new type of AlTiN coating containing about 29.13 at.% Al,16.02 at.% Ti and 54.85 at.% N was prepared by arc ion plating technology. The coating is composed of singular fcc-(Al, Ti)N phase and has no hcp-AlN phase ...A new type of AlTiN coating containing about 29.13 at.% Al,16.02 at.% Ti and 54.85 at.% N was prepared by arc ion plating technology. The coating is composed of singular fcc-(Al, Ti)N phase and has no hcp-AlN phase to be formed. Due to the high content of beneficial element Al, the hardness and effective elastic modulus of the coating are up to 33.9 and 486.1 GPa, respectively. The adhesion strength between the coating and substrate is about 39.7 N. Electro- chemical test shows that the corrosion current density of the AlTiN coating is nearly one-sixth of the substrate, and the charge transfer resistance Rct of the AlTiN coating is much larger than that of the substrate, which means that the coating could act as a protective barrier between the substrate and corrosive electrolyte, enhancing the corrosion resistance.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.51501130 and 51301181)the Tianjin Key Research Program of Application Foundation and Advanced Technology (Grant No.15JCZDJC39700)+2 种基金the Innovation Team Training Plan of Tianjin Universities and colleges (Grant No.TD12-5043)the Tianjin Science and Technology Correspondent Project (16JCTPJC49500)the Research Development Foundation of Tianjin University of Technology and Education (Grant No.KYQD14046)
文摘Four CrAlN coatings with various Al content were prepared by arc ion plating technology under different target currents. The effect of the Al content on the microstructure, chemical compositions, element chemical bonding states and mechanical properties of the CrAlN coatings was analyzed. X-ray diffraction results show that the primary phase of the CrAlN coating is fcc-(Al, Cr)N when the Al content is about 44.02 at.%. However, when the Al content increases to about 53.34 at.%, hcp-AlN phase emerges in the coating. And the hcp-AlN phase becomes the main phase in the CrAlN coating with Al content of about 69.55 at.%. Cross-sectional images show that all the four coatings possess dense structures and the deposition rate of Al atom is higher than that of Cr atom. The hardness of the CrAlN coating with Al content about 44.02 at.% is the largest (3149.72 HV) due to the solid solution hardening effect of the Al element. When the hcp-AlN phase is generated in the CrAlN coating, the hardness declines. The tribological experiment shows that the wear resistance of the CrAlN coating decreases gradually with increasing Al content when sliding against 100Cr6 steel ball.
基金supported by the National Nature Science Foundation of China (Grant Nos. 51501130 and 51301181)the Tianjin Key Research Program of Application Foundation and Advanced Technology (Grant No. 15JCZDJC39700)+2 种基金the Innovation Team Training Plan of Tianjin Universities and colleges (Grant No. TD12-5043)the Tianjin Science and Technology correspondent project (16JCTPJC49500)Research Development Foundation of Tianjin University of Technology and Education (Grant No. KJ1422)
文摘A new type of AlTiN coating containing about 29.13 at.% Al,16.02 at.% Ti and 54.85 at.% N was prepared by arc ion plating technology. The coating is composed of singular fcc-(Al, Ti)N phase and has no hcp-AlN phase to be formed. Due to the high content of beneficial element Al, the hardness and effective elastic modulus of the coating are up to 33.9 and 486.1 GPa, respectively. The adhesion strength between the coating and substrate is about 39.7 N. Electro- chemical test shows that the corrosion current density of the AlTiN coating is nearly one-sixth of the substrate, and the charge transfer resistance Rct of the AlTiN coating is much larger than that of the substrate, which means that the coating could act as a protective barrier between the substrate and corrosive electrolyte, enhancing the corrosion resistance.