The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of ...The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.展开更多
A Ta wire-reinforced Zr-based bulk metallic glass composite with a new type of structure was prepared successfully by the method of liquid metal infiltration. Ta wires distribute uniformly in the metallic glass matrix...A Ta wire-reinforced Zr-based bulk metallic glass composite with a new type of structure was prepared successfully by the method of liquid metal infiltration. Ta wires distribute uniformly in the metallic glass matrix in the form of spirals. The composite exhibits two yield stages under compressive stress, and the samples are compressed into thin pancakes. The micro-cracks originate at the interface between the Ta wire and the metallic glass matrix and propagate perpendicularly to the interface, which then induce multiple shear bands in the metallic glass matrix due to the stress concentration. Shear cracks form in the metallic glass matrix during the continued loading process as a result of the interaction of shear bands. Deformation bands of Ta wires occur under the impact of shear bands. The local stress fields in the composite are changed obviously due to the introduction of the spiral-formed reinforcements. The investigation of the deformation behavior and mechanism suggests a new method for the application of bulk metallic glass composites as the structural materials.展开更多
The effects of Ti element on the corrosion resistance of the metallic glass Zr51.3AlloNi6Cu31.8Ag0.lY0.8 in aqueous solution with various chloride concentrations were investigated, and the effect mechanism was discuss...The effects of Ti element on the corrosion resistance of the metallic glass Zr51.3AlloNi6Cu31.8Ag0.lY0.8 in aqueous solution with various chloride concentrations were investigated, and the effect mechanism was discussed. X-ray diffraction con-firmed that Ti-added Zr51.3All0Ni6Cu31.8Ag0.lY0.8 metallic glasses with diameter of 3 mm were all metallic glasses. Weight loss and electrochemical method were introduced to characterize their corrosion resistance, and X-ray photo-electron spectroscopy study was used t9 characterize the passive film composition. The results show that the corrosion resistance of metallic glass is significantly improved with Ti addition, and Zr dioxides dominate in passive film during corrosion when Ti content is low. High Ti addition can lead to an obvious accumulation of Ti dioxides, which results in a thicker, Ti-enriched protective passive film.展开更多
High-entropy alloys(HEAs) are a new class of materials with a potential engineering application,but how to obtain ultrafine or nano-sized crystal structures of HEAs has been a challenge.Here,we first presented an equi...High-entropy alloys(HEAs) are a new class of materials with a potential engineering application,but how to obtain ultrafine or nano-sized crystal structures of HEAs has been a challenge.Here,we first presented an equiatomic CoCrFeNiCu HEA with excellent mechanical properties obtained via friction stir processing(FSP).After FSP,the Cu element segregation in the cast CoCrFeNiCu HEA was almost eliminated,and the cast coarse two-phase structure(several micrometers) was changed into an ultrafine-grained single-phase structure(150 nm) with a large fraction of high-angle grain boundaries and nanoscale deformation twins.This unique microstructure was mainly attributed to the severe plastic deformation during FSP,and the sluggish diffusion effect in dynamics and the lattice distortion effect in crystallography for HEAs.Furthermore,FSP largely improved the hardness and yield strength of the CoCrFeNiCu HEA with a value of 380 HV and more than 1150 MPa,respectively,which were> 1.5 times higher than those of the base material.The great strengthening after FSP was mainly attributed to the significant grain refinement with large lattice distortion and nano-twins.This study provides a new method to largely refine the microstructure and improve the strength of cast CoCrFeNiCu HEAs.展开更多
基金the support of the China Manned Space Engineering(YYMT1201-EXP08)。
文摘The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.
基金supported by the National Key Research and Development Program(No.2021YFA0716303)Chinese Academy of Sciences of China(No.ZDBS-LY-JSC023)Ling-Chuang Research Project of the China National Nuclear Corporation。
基金This work was supported by the National Natural Science Foundation of China (51434008 (U1435204), 51531005), the China's Manned Space Station Project (Mission No: TGJZS00-2-RW024), Dongguan Innovative Research Team Program (2014607134), Shenyang Key R & D and Technology Transfer Pro-gram (Z17-7-001), Seed Fund Project of Shenyang National University Science and Technology Zone (20151019001) and Dou-ble-hundred Program of Shenyang Science and Technology Innova-tion Project (Y17-2-036).
文摘A Ta wire-reinforced Zr-based bulk metallic glass composite with a new type of structure was prepared successfully by the method of liquid metal infiltration. Ta wires distribute uniformly in the metallic glass matrix in the form of spirals. The composite exhibits two yield stages under compressive stress, and the samples are compressed into thin pancakes. The micro-cracks originate at the interface between the Ta wire and the metallic glass matrix and propagate perpendicularly to the interface, which then induce multiple shear bands in the metallic glass matrix due to the stress concentration. Shear cracks form in the metallic glass matrix during the continued loading process as a result of the interaction of shear bands. Deformation bands of Ta wires occur under the impact of shear bands. The local stress fields in the composite are changed obviously due to the introduction of the spiral-formed reinforcements. The investigation of the deformation behavior and mechanism suggests a new method for the application of bulk metallic glass composites as the structural materials.
基金This work is supported by the National Natural Science Foundation of China [51434008 (U1435204), 51531005], China's Manned Space Station Project (Mission No. TGJZ800-2-RW024), CAS Key Project "Research & Development of Nuclear Materials and Service Safety Assurance Technology" (ZDRW-CN- 2017-1 ), DongGuan Innovative Research Team Program (2014607134), Shenyang Key R&D and Technology Transfer Pro-gram (Z17-7-001), Theme Special Project of Shenyang Key Science and Technology Research and Development Programs (17-85-0-00), and Double-hundred Program of Shenyang Science and Technology Innovation Project (Y17-2-036).
文摘The effects of Ti element on the corrosion resistance of the metallic glass Zr51.3AlloNi6Cu31.8Ag0.lY0.8 in aqueous solution with various chloride concentrations were investigated, and the effect mechanism was discussed. X-ray diffraction con-firmed that Ti-added Zr51.3All0Ni6Cu31.8Ag0.lY0.8 metallic glasses with diameter of 3 mm were all metallic glasses. Weight loss and electrochemical method were introduced to characterize their corrosion resistance, and X-ray photo-electron spectroscopy study was used t9 characterize the passive film composition. The results show that the corrosion resistance of metallic glass is significantly improved with Ti addition, and Zr dioxides dominate in passive film during corrosion when Ti content is low. High Ti addition can lead to an obvious accumulation of Ti dioxides, which results in a thicker, Ti-enriched protective passive film.
基金supported by the National Natural Science Foundation of China under Grant Nos. 51601194, 51975553, 51575362the IMR SYNL-T.S. Kê Research Fellowship。
文摘High-entropy alloys(HEAs) are a new class of materials with a potential engineering application,but how to obtain ultrafine or nano-sized crystal structures of HEAs has been a challenge.Here,we first presented an equiatomic CoCrFeNiCu HEA with excellent mechanical properties obtained via friction stir processing(FSP).After FSP,the Cu element segregation in the cast CoCrFeNiCu HEA was almost eliminated,and the cast coarse two-phase structure(several micrometers) was changed into an ultrafine-grained single-phase structure(150 nm) with a large fraction of high-angle grain boundaries and nanoscale deformation twins.This unique microstructure was mainly attributed to the severe plastic deformation during FSP,and the sluggish diffusion effect in dynamics and the lattice distortion effect in crystallography for HEAs.Furthermore,FSP largely improved the hardness and yield strength of the CoCrFeNiCu HEA with a value of 380 HV and more than 1150 MPa,respectively,which were> 1.5 times higher than those of the base material.The great strengthening after FSP was mainly attributed to the significant grain refinement with large lattice distortion and nano-twins.This study provides a new method to largely refine the microstructure and improve the strength of cast CoCrFeNiCu HEAs.