期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide 被引量:12
1
作者 Yun-Xiang Pan zheng-qing sun +4 位作者 Huai-Ping Cong Yu-Long Men Sen Xin Jie Song Shu-Hong Yu 《Nano Research》 SCIE EI CAS CSCD 2016年第6期1689-1700,共12页
Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affec... Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an Vo influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on Vo-rich gallium oxide coated with Pt nanoparticles (Vo-rich Pt/Ga203), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0umol.h-1) compared to those on Vo-poor Pt/Ga2O3 (3.9 gmol-h-1) and Pt/TiO2(P25) (6.7 gmol.h-1). We demonstrate that the Vo leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga203, thus enhancing the photocatalytic activity of Pt/Ga203. Rational fabrication of an Vo is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction. 展开更多
关键词 photocatalytic CO2reduction oxygen vacancy metal-oxide-based catalyst C02 adsorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部