In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxi...In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.展开更多
By the variable transformation and generalized Hirota method, exact homoclinic and heteroclinic solutions for Davey-Stewartson II (DSII) equation are obtained. For perturbed DSII equation, the existence of a global ...By the variable transformation and generalized Hirota method, exact homoclinic and heteroclinic solutions for Davey-Stewartson II (DSII) equation are obtained. For perturbed DSII equation, the existence of a global attractor is proved. The persistence of homoclinic and heteroclinic flows is investigated, and the special homoclinic and heteroclinic structure in attractors is shown.展开更多
基金Supported by the National Natural Science Foundation of China(No.11361048)
文摘In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.
基金Supported by the National Natural Science Foundation of China(No.10361007,10661002)Yunnan Natural Science Foundation Grant No.2006A0082M.
文摘By the variable transformation and generalized Hirota method, exact homoclinic and heteroclinic solutions for Davey-Stewartson II (DSII) equation are obtained. For perturbed DSII equation, the existence of a global attractor is proved. The persistence of homoclinic and heteroclinic flows is investigated, and the special homoclinic and heteroclinic structure in attractors is shown.