期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone 被引量:2
1
作者 DA-LIN HU HUAN-WEN TANG +11 位作者 HAI-RONG LIANG DONG-SHENG TANG YI-MING LIU WEI-DONG JI JIAN-HUI YUAN YUN HE zheng-yu zhu JIAN-PING YANG DAO-KUI FANG YAN SHA XIAO-ZHI TU ZHI-XIONG zhuANG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2007年第2期171-177,共7页
Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. M... Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-C1 were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. 展开更多
关键词 Human bronchial epithelial cells RNA interference HYDROQUINONE TOXICOLOGY DNA polymerase beta
下载PDF
Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings 被引量:1
2
作者 Xiao-song Jiang Guo-qiu He +2 位作者 Bing Liu zheng-yu zhu Wei-hua Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第4期437-443,共7页
With the increasing use of Al-Si-Mg alloys in the automotive industry,the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability.The fatigue characteristics and microcosmic m... With the increasing use of Al-Si-Mg alloys in the automotive industry,the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability.The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research.As low cycle fatigue life and material strengthening behavior are closely related,the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed.Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties.The fatigue life exhibits a stable behavior under multiaxial proportional loadings.The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy(TEM).The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles.Simultaneously,the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings.The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material,which is caused by multiaxial proportional loadings. 展开更多
关键词 aluminum alloys proportional loadings FATIGUE MICROSTRUCTURE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部