The ecosystems in Southern Ocean(SO)are undergoing significant changes in the context of climate change.To identify environment-phytoplankton feedbacks in SO,seawater samples were collected in the Cosmonaut Sea(CS)dur...The ecosystems in Southern Ocean(SO)are undergoing significant changes in the context of climate change.To identify environment-phytoplankton feedbacks in SO,seawater samples were collected in the Cosmonaut Sea(CS)during the 37 th China Antarctic Research Expedition(Jan.2021)(CHINARE-37)and subjected to analysis of particulate organic carbon(POC)and phytoplankton pigments.The remote sensing data,CHEMTAX community compositional modeling analysis,and physicochemical measurements were combined to explore the spatial variation of phytoplankton crops,taxonomic composition,and their environmental drivers.Historical phytoplankton community data from the area were also compared against those of this study to investigate inter-annual community differences and their potential causes.The column-integrated POC and chlorophyll-a(Chl-a)concentrations were 12.0±4.9 g/m^(2) and 73.8±50.5 mg/m^(2),respectively.The two most dominant taxa were haptophyte that are adapted to high Fe availability(Hapt-HiFe,mainly Phaeocystis antarctica)and Diatoms-A(Phaeodactylum tricornutum)that contributed to 33%±25%and 24%±14%to the total phytoplankton crops,respectively.Through cluster analysis,the study area was divided into two regions dominated by Hapt-HiFe and Diatoms-A,respectively.Spatially,Hapt-HiFe was mainly concentrated in the southwest coastal area that featured low temperatures,low salinity,and shallow euphotic zones.The coastal region southwest of the southern boundary of the Antarctic circumpolar current was experiencing a bloom of Hapt-HiFe during the study period that significantly contributed to the POC pool and Chl-a concentrations(R=0.46,P<0.01;R=0.42,P<0.01).Besides,the dominance of Hapt-HiFe in the CS suggests a high biological availability of dissolved Fe that is primarily associated with inputs from sea ice melt and upwellings.展开更多
The ecosystem of the sea region adjacent to the Antarctic Peninsula is undergoing remarkable physical and biological changes, in the context of global warming. However, understanding of the dynamics of phytoplankton t...The ecosystem of the sea region adjacent to the Antarctic Peninsula is undergoing remarkable physical and biological changes, in the context of global warming. However, understanding of the dynamics of phytoplankton taxonomic composition in this marginal ice zone remains unclear. In this study, seawater samples collected from 36 stations in the northeastern Antarctic Peninsula were analyzed for nutrients and phytoplankton pigments.Combining with CHEMTAX analysis, remote sensing data, and physicochemical measurements, we investigated the relationships between phytoplankton crops, taxonomic composition, and marine environmental drivers.Integrated chlorophyll a(Chl a) concentrations(200 m) varied from 8.9 mg/m^(2)to 64.2 mg/m^(2), with an average of(23.2±12.0) mg/m^(2)and higher phytoplankton biomass concentrated in the coastal region of South Orkney Island and South Shetland Island. Diatoms were the dominant functional group(63%±21%). Higher proportions of diatoms were associated with higher Chl a(r=0.40, p<0.01), stable water columns(r=0.20, p<0.01), higher Si/P ratios(r=0.34, p<0.01), higher photosynthetically active radiation intensity(r=0.64, p<0.01), and higher sea ice melt water contributions(MWC, r=0.20, p<0.01). Conversely, Phaeocystis antarctica contributed a smaller overall proportion(31%±18%) and was more concentrated in the offshore water masses(e.g., Philip Ridge and South Scotia Ridge) with lower light levels(r=-0.58, p<0.01), deeper mixed layer depths(r=0.17, p<0.05), higher nutrient concentrations(e.g., N, P, and Si, r>0.35, p<0.01), and lower MWC(r=-0.20, p<0.01). In comparison, the total contribution from green flagellates(4%±5%), cryptophyta(1%±3%), dinoflagellates(1%±4%), and cyanobacteria(1% ± 5%) was only 6%. In offshore regions with well-mixed water, less varied taxonomic composition and lower crops with a higher proportion of nanophytoplankton were observed. In contrast, significantly decreasing crops below the mixed layer depth was observed in water columns with strong stratification, where the dominant phytoplankter changed from diatoms to P. antarctica. These findings have important implications for better understanding the future dynamics of marine ecosystems in the sea area adjacent to the Antarctic Peninsula.展开更多
The settling of particulate carbon in seawater is a key component of the ocean carbon cycle. We deployed a set of sediment trap in the polynya of Prydz Bay from December 2010 to December 2011 to investigate the season...The settling of particulate carbon in seawater is a key component of the ocean carbon cycle. We deployed a set of sediment trap in the polynya of Prydz Bay from December 2010 to December 2011 to investigate the seasonal variations in particle fluxes. There was a clear seasonal variation in the particle fluxes, with maximum and minimum fluxes recorded during the summer and winter, respectively. The average total flux over the sampling period was 193.58 mg m^(-2)d^(-1), and the average fluxes of organic carbon(C_(org)), inorganic carbon(C_(inorg)), and biogenic silica(Si_(bio)) were 721.78, 28.67, and 2382.80 μmol m^(-2) d^(-1), respectively. Si_(bio)was the main contributor to the total mass flux, and strongly correlated with C_(org). The high Si_(bio)/C_(org)molar ratios(>1) suggest that C_(org)was transported to deep sea in association with Si_(bio). By comparing remote sensing data of sea ice and chlorophyll in the upper water column, we found that the dynamics of carbon fluxes were closely related to changes in sea ice. Algae in sea ice may have a key role in biological pump processes in early summer. Apart from the ice algae bloom period, variations in carbon fluxes generally corresponded with phytoplankton blooms in the upper water. The ballast effect controlled the particle settling velocity and the efficiency of the biological pump. Sea ice rafts initiated the first particle export event and enhanced the particle settling efficiency during melting period. As diatoms might become less dominant in the ice-free area, sea ice loss may cause the efficiency of the biological pump efficiency to decrease over the long term.展开更多
El Nio-Southern Oscillation(ENSO)has affected penguins and their habitats in the western Antarctic Peninsula.We used both historical penguin population dynamics data(1980–2012)and sedimentary lipids in penguin droppi...El Nio-Southern Oscillation(ENSO)has affected penguins and their habitats in the western Antarctic Peninsula.We used both historical penguin population dynamics data(1980–2012)and sedimentary lipids in penguin droppings(1916–2001)on Ardley Island to examine the responses of the Antarctic ecosystem to ENSO(El Nin o/La Nin a)events.The results showed that during the last 30 years,climate,marine food chain changes,and human activity have significantly affected penguin population sizes on Ardley Island.The Chinstrap(Pygoscelis antarctica)and Ade′lie(P.adeliae)penguin populations showed a good correlation with ENSO events.The Chinstrap penguin population decreased significantly because it was more sensitive to increasing human disturbance(e.g.,scientific activity and tourism)than Ade′lie and Gentoo(P.papua),particularly during the breeding season.Compositional features of n-alkanes in penguin dropping sediments revealed that organic matter came from lower terrestrial plants,bacteria and algae.C23was the main nalkane heavy hydrocarbon indicating mosses and lichens in the penguin’s diet.Variation in the ratio of nC23/nC17was closely correlated with ENSO events.The bacteria intrusion index(ratio of(iC15:0?aC15:0)/nC15:0for fatty acids)reflected significant increases in microorganism activity during several periods in this area.Meanwhile,the CPIA value for fatty acids decreased because micro-organisms contributed light hydrocarbon fatty acids to penguin droppings.Our results showed that the fine structure and molecular indices of fatty acids and n-alkanes in penguin dropping sediments can be used to explain climate-driven microbial processes,and to reveal the important role that microbes and bacteria play in the relatively simple Antarctic ecosystem.展开更多
基金Supported by the China’s National Polar Special Program“Impact and Response of Antarctic Seas to Climate Change”(Nos.IRASCC 01-01-02,IRASCC 02-02)the Scientific Research Fund of the Second Institute of Oceanography(Nos.JG 2011,JG 2211,JG 2013,JG 1805)+1 种基金the National Natural Science Foundation of China(Nos.42276255,41976228,41976227)the International Cooperation Key Project of Ministry of Science and Technology(No.2022 YFE 0136500)。
文摘The ecosystems in Southern Ocean(SO)are undergoing significant changes in the context of climate change.To identify environment-phytoplankton feedbacks in SO,seawater samples were collected in the Cosmonaut Sea(CS)during the 37 th China Antarctic Research Expedition(Jan.2021)(CHINARE-37)and subjected to analysis of particulate organic carbon(POC)and phytoplankton pigments.The remote sensing data,CHEMTAX community compositional modeling analysis,and physicochemical measurements were combined to explore the spatial variation of phytoplankton crops,taxonomic composition,and their environmental drivers.Historical phytoplankton community data from the area were also compared against those of this study to investigate inter-annual community differences and their potential causes.The column-integrated POC and chlorophyll-a(Chl-a)concentrations were 12.0±4.9 g/m^(2) and 73.8±50.5 mg/m^(2),respectively.The two most dominant taxa were haptophyte that are adapted to high Fe availability(Hapt-HiFe,mainly Phaeocystis antarctica)and Diatoms-A(Phaeodactylum tricornutum)that contributed to 33%±25%and 24%±14%to the total phytoplankton crops,respectively.Through cluster analysis,the study area was divided into two regions dominated by Hapt-HiFe and Diatoms-A,respectively.Spatially,Hapt-HiFe was mainly concentrated in the southwest coastal area that featured low temperatures,low salinity,and shallow euphotic zones.The coastal region southwest of the southern boundary of the Antarctic circumpolar current was experiencing a bloom of Hapt-HiFe during the study period that significantly contributed to the POC pool and Chl-a concentrations(R=0.46,P<0.01;R=0.42,P<0.01).Besides,the dominance of Hapt-HiFe in the CS suggests a high biological availability of dissolved Fe that is primarily associated with inputs from sea ice melt and upwellings.
基金The program of Impact and Response of Antarctic Seas to Climate Change under contract No. IRASCC2020-2022(01-01-02 and 02-02)the National Natural Science Foundation of China under contract Nos 41976228, 41976227 and 41506223the Scientific Research Fund of the Second Institute of Oceanography under contract Nos JG1805, JG2011 and JG2013。
文摘The ecosystem of the sea region adjacent to the Antarctic Peninsula is undergoing remarkable physical and biological changes, in the context of global warming. However, understanding of the dynamics of phytoplankton taxonomic composition in this marginal ice zone remains unclear. In this study, seawater samples collected from 36 stations in the northeastern Antarctic Peninsula were analyzed for nutrients and phytoplankton pigments.Combining with CHEMTAX analysis, remote sensing data, and physicochemical measurements, we investigated the relationships between phytoplankton crops, taxonomic composition, and marine environmental drivers.Integrated chlorophyll a(Chl a) concentrations(200 m) varied from 8.9 mg/m^(2)to 64.2 mg/m^(2), with an average of(23.2±12.0) mg/m^(2)and higher phytoplankton biomass concentrated in the coastal region of South Orkney Island and South Shetland Island. Diatoms were the dominant functional group(63%±21%). Higher proportions of diatoms were associated with higher Chl a(r=0.40, p<0.01), stable water columns(r=0.20, p<0.01), higher Si/P ratios(r=0.34, p<0.01), higher photosynthetically active radiation intensity(r=0.64, p<0.01), and higher sea ice melt water contributions(MWC, r=0.20, p<0.01). Conversely, Phaeocystis antarctica contributed a smaller overall proportion(31%±18%) and was more concentrated in the offshore water masses(e.g., Philip Ridge and South Scotia Ridge) with lower light levels(r=-0.58, p<0.01), deeper mixed layer depths(r=0.17, p<0.05), higher nutrient concentrations(e.g., N, P, and Si, r>0.35, p<0.01), and lower MWC(r=-0.20, p<0.01). In comparison, the total contribution from green flagellates(4%±5%), cryptophyta(1%±3%), dinoflagellates(1%±4%), and cyanobacteria(1% ± 5%) was only 6%. In offshore regions with well-mixed water, less varied taxonomic composition and lower crops with a higher proportion of nanophytoplankton were observed. In contrast, significantly decreasing crops below the mixed layer depth was observed in water columns with strong stratification, where the dominant phytoplankter changed from diatoms to P. antarctica. These findings have important implications for better understanding the future dynamics of marine ecosystems in the sea area adjacent to the Antarctic Peninsula.
基金supported by the National Natural Science Foundation of China(Grant Nos.41406219,41576186&41506223)the Scientific Research Fund of the Second Institute of Oceanography,SOA(Grant No.JT1405)+2 种基金the Chinese Polar Environment Comprehensive Investigation&Assessment Programs(Grant No.CHINARE 01-04,04-01)the Chinese Arctic and Antarctic Administration Foundation(Grant No.20150302)the Scientific Research Project of Marine Public Welfare Industry of China(Grant No.201405031-04)
文摘The settling of particulate carbon in seawater is a key component of the ocean carbon cycle. We deployed a set of sediment trap in the polynya of Prydz Bay from December 2010 to December 2011 to investigate the seasonal variations in particle fluxes. There was a clear seasonal variation in the particle fluxes, with maximum and minimum fluxes recorded during the summer and winter, respectively. The average total flux over the sampling period was 193.58 mg m^(-2)d^(-1), and the average fluxes of organic carbon(C_(org)), inorganic carbon(C_(inorg)), and biogenic silica(Si_(bio)) were 721.78, 28.67, and 2382.80 μmol m^(-2) d^(-1), respectively. Si_(bio)was the main contributor to the total mass flux, and strongly correlated with C_(org). The high Si_(bio)/C_(org)molar ratios(>1) suggest that C_(org)was transported to deep sea in association with Si_(bio). By comparing remote sensing data of sea ice and chlorophyll in the upper water column, we found that the dynamics of carbon fluxes were closely related to changes in sea ice. Algae in sea ice may have a key role in biological pump processes in early summer. Apart from the ice algae bloom period, variations in carbon fluxes generally corresponded with phytoplankton blooms in the upper water. The ballast effect controlled the particle settling velocity and the efficiency of the biological pump. Sea ice rafts initiated the first particle export event and enhanced the particle settling efficiency during melting period. As diatoms might become less dominant in the ice-free area, sea ice loss may cause the efficiency of the biological pump efficiency to decrease over the long term.
基金supported by the National Natural Science Foundation of China(40876104 and 41306202)the scientific research fund of Second Institute of Oceanography,State Oceanic Administration(JT1208 and JG1218)Chinese Arctic and Antarctic Administration Foundation(20110208)
文摘El Nio-Southern Oscillation(ENSO)has affected penguins and their habitats in the western Antarctic Peninsula.We used both historical penguin population dynamics data(1980–2012)and sedimentary lipids in penguin droppings(1916–2001)on Ardley Island to examine the responses of the Antarctic ecosystem to ENSO(El Nin o/La Nin a)events.The results showed that during the last 30 years,climate,marine food chain changes,and human activity have significantly affected penguin population sizes on Ardley Island.The Chinstrap(Pygoscelis antarctica)and Ade′lie(P.adeliae)penguin populations showed a good correlation with ENSO events.The Chinstrap penguin population decreased significantly because it was more sensitive to increasing human disturbance(e.g.,scientific activity and tourism)than Ade′lie and Gentoo(P.papua),particularly during the breeding season.Compositional features of n-alkanes in penguin dropping sediments revealed that organic matter came from lower terrestrial plants,bacteria and algae.C23was the main nalkane heavy hydrocarbon indicating mosses and lichens in the penguin’s diet.Variation in the ratio of nC23/nC17was closely correlated with ENSO events.The bacteria intrusion index(ratio of(iC15:0?aC15:0)/nC15:0for fatty acids)reflected significant increases in microorganism activity during several periods in this area.Meanwhile,the CPIA value for fatty acids decreased because micro-organisms contributed light hydrocarbon fatty acids to penguin droppings.Our results showed that the fine structure and molecular indices of fatty acids and n-alkanes in penguin dropping sediments can be used to explain climate-driven microbial processes,and to reveal the important role that microbes and bacteria play in the relatively simple Antarctic ecosystem.