期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion 被引量:1
1
作者 Dawei Wang Huili Han +7 位作者 Bo Sa Kelin Li Jujie Yan Jiazhen Zhang Jianguang Liu zhengdi he Ning Wang Ming Yan 《Opto-Electronic Advances》 SCIE EI CAS 2022年第10期35-68,共34页
Additive manufacturing(AM), or 3D printing, is an emerging technology that “adds” materials up and constructs products through a layer-by-layer procedure. Laser powder bed fusion(LPBF) is a powder-bed-based AM techn... Additive manufacturing(AM), or 3D printing, is an emerging technology that “adds” materials up and constructs products through a layer-by-layer procedure. Laser powder bed fusion(LPBF) is a powder-bed-based AM technology that can fabricate a large variety of metallic materials with excellent quality and accuracy. However, various defects such as porosity,cracks, and incursions can be generated during the printing process. As the most universal and a near-inevitable defect,porosity plays a substantial role in determining the mechanical performance of as-printed products. This work presents a comprehensive review of literatures that focused on the porosity in LPBF printed metals. The formation mechanisms,evaluation methods, effects on mechanical performance with corresponding models, and controlling methods of porosity have been illustrated and discussed in-depth. Achievements in four representative metals, namely Ti-6Al-4V, 316L, Inconel 718, and Al Si10Mg, have been critically reviewed with a statistical analysis on the correlation between porosity fraction and tensile properties. Ductility has been determined as the most sensitive property to porosity among several key tensile properties. This review also provides potential directions and opportunities to address the current porosity-related challenges. 展开更多
关键词 additive manufacturing laser powder bed fusion selective laser melting POROSITY DEFECTS mechanical performance metallic materials PERSPECTIVES
下载PDF
Ultimate capacity analysis of cladding-pumped 10/130 Tm:fiber laser
2
作者 吉恩才 史捷 +5 位作者 查丛文 曾晶 周心悟 何正娣 姚勇 吕启涛 《Chinese Optics Letters》 SCIE EI CAS CSCD 2020年第5期36-39,共4页
The ultimate capacity of a cladding-pumped 10/130 Tm:fiber is experimentally investigated with a 793 nm laser diode bidirectionally pumped amplifier. The laser system works stably at the output powers of 52 W,65 W, an... The ultimate capacity of a cladding-pumped 10/130 Tm:fiber is experimentally investigated with a 793 nm laser diode bidirectionally pumped amplifier. The laser system works stably at the output powers of 52 W,65 W, and 87 W. Eventually, the damage of the amplifier occurs when the output power reaches about 103.5 W with a total incident pump power of 176.8 W. Considering the incident seed power of 12.3 W,the amplifier conversion efficiency is estimated to be about 51.6% before it is damaged. With valuable exploration, we achieve the first air-cooling 60 W Tm:fiber laser at 1945.845 nm with a spectral linewidth of 0.4 nm.The laser power stability reaches 1.24% during a continuous test time of >65 h. The beam quality is measured as M_x^2=1.16 and M_y^2=1.14. 展开更多
关键词 double cladding Tm:fiber all-fiber laser
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部