Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured ...Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured LCO,which demonstrates excellent cycling performance.Half-cell shows 94.2%capacity retention after 100 cycles at 3.0-4.6 V(vs.Li/Li^(+))cycling,and no capacity decay after 300 cycles for fullcell test(3.0-4.55 V).Based on comprehensive microanalysis and theoretical calculations,the degradation mechanisms and doping effects are systematically revealed.For the undoped LCO,high voltage cycling induces severe interfacial and bulk degradations,where cracks,stripe defects,fatigue H2 phase,and spinel phase are identified in grain bulk.For the doped LCO,Mg-doped surface shell can suppress the interfacial degradations,which not only stabilizes the surface structure by forming a thin rock-salt layer but also significantly improves the electronic conductivity,thus enabling superior rate performance.Bulk Al-doping can suppress the lattice"breathing"effect and the detrimental H3 to H1-3 phase transition,which minimizes the internal strain and defects growth,maintaining the layered structure after prolonged cycling.Combining theoretical calculations,this work deepens our understanding of the doping effects of Mg and Al,which is valuable in guiding the future material design of high voltage LCO.展开更多
In traditional Chinese medicine(TCM),Euphorbia fischeriana Steud(E.fischeriana)and Euphorbia ebracteolata Hayata(E.ebracteolata),commonly referred to as“Langdu”,are widely extensively utilized for treating lymphatic...In traditional Chinese medicine(TCM),Euphorbia fischeriana Steud(E.fischeriana)and Euphorbia ebracteolata Hayata(E.ebracteolata),commonly referred to as“Langdu”,are widely extensively utilized for treating lymphatic tuberculosis and ringworm[1].Both plant species are perennial herbaceous plants mainly distributed in northeastern China,Mongolia,Russia(Siberia),and Republic of Korea[2].There have been many reports on the chemical constituents and pharmacological effects of the two plant species,which has made more and more researchers realize that there may be differences between E.fischeriana and E.ebracteolata.In some cases,long-term improper use of herbal medicines can even lead to life-threatening conditions[3,4].Therefore,it is essential to employ an effective technology to differentiate between these two plants based on their chemical constituents and biological activities,so as to reduce the harm caused by the mixing and misuse of medicinal materials.Therefore,the present paper describes a study of the differences between E.ebracteolata and E.fischeriana,using untargeted plant metabolomics and biological activity evaluations.This study aims to provide valuable insight into their equivalence and potential interchangeability in TCM and clinical medication.展开更多
The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibri...The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7].展开更多
Cathode electrolyte interphase(CEI)layer plays a crucial role in determining the electrochemical performance of lithium-ion batteries.Limited by the sensitive nature of CEI and the lack of characterization techniques,...Cathode electrolyte interphase(CEI)layer plays a crucial role in determining the electrochemical performance of lithium-ion batteries.Limited by the sensitive nature of CEI and the lack of characterization techniques,its dynamic evolution during cycling,its formation mechanism,and its specific impact on battery performance are not yet fully understood.Herein,we systematically investigate the dynamic evolution of CEI layer and its critical effect on the cycling performance of LiCoO_(2)cathode by diverse characterization techniques.We find that cycling voltage plays a key role in affecting CEI formation and evolution,and a critical potential(4.05 V vs.Li)is identified,which acts as the switching potential between CEI deposition and decomposition.We show that CEI starts deposition in the discharge process when the potential is below 4.05 V,and CEI decomposition occurs when the potential is higher than 4.05 V.When the battery is cycled below such a critical potential,a stable CEI layer is developed,which leads to superior cycling stability.When the battery is cycled above such a critical potential,a CEI-free cathode interface is observed,which also demonstrates good cycle stability.However,when the critical potential falls in the cycling voltage range,CEI deposition and decomposition are repeatedly switched on during cycling,leading to the dynamically unstable CEI layer.The unstable CEI layer causes continuous interfacial reaction and degradation,resulting in battery performance decay.Our work deepens the understanding of the CEI formation and evolution mechanisms,and clarifies the critical effect of CEI layer on cycling performance,which provides new insights into stabilizing the electrode-electrolyte interface for high-performance rechargeable batteries.展开更多
Metal organic frameworks(MOFs) have been extensively investigated in Li-S batteries owing to high surface area, adjustable structures and abundant catalytic sites. Nevertheless, the insulating nature of traditional MO...Metal organic frameworks(MOFs) have been extensively investigated in Li-S batteries owing to high surface area, adjustable structures and abundant catalytic sites. Nevertheless, the insulating nature of traditional MOFs render retarded kinetics of polysulfides conversion, leading to insufficient utilization of sulfur. In comparison, conductive MOFs(c-MOFs) show great potential for promoting polysulfides transformation due to superb electronic conductivity. In this work, a nickel-catecholates based c-MOF, NiHHTP(HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), is designed to regulate surface chemistry of self-supported carbon paper for advanced Li-S batteries. Taking advantage of the porous structure and high conductivity, the as-prepared Ni-HHTP is conducive to synergising strengthening the chemisorption of polysulfides and accelerating the reaction kinetics in Li-S batteries, significantly mitigating the polysulfides diffusion from the non-encapsulated sulfur cathode, therefore promoting polysulfides transformation in Li-S batteries. This work points out a promising modification strategy for developing advanced sulfur cathode in Li-S batteries.展开更多
Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries.However,their working mechanisms are still mysterious,especially in practical high-voltage LiCoO_(2)pouch lithium-ion b...Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries.However,their working mechanisms are still mysterious,especially in practical high-voltage LiCoO_(2)pouch lithium-ion batteries.Herein,we adopt a tridentate ligandcontaining 1,3,6-hexanetricarbonitrile(HTCN)as an effective electrolyte additive to shed light on the mechanism of stabilizing high-voltage LiCoO_(2)cathode(4.5 V)through nitriles.The LiCoO_(2)/graphite pouch cells with the HTCN additive electrolyte possess superior cycling performance,90%retention of the initial capacity after 800 cycles at 25℃,and 72%retention after 500 cycles at 45℃,which is feasible for practical application.Such an excellent cycling performance can be attributed to the stable interface:The HTCN molecules with strong electron-donating ability participate in the construction of cathode-electrolyte interphase(CEI)through coordinating with Co ions,which suppresses the decomposition of electrolyte and improves the structural stability of LiCoO_(2)during cycling.In summary,the work recognizes a coordinating-based interphase-forming mechanism as an effective strategy to optimize the performance of high voltage LiCoO_(2)cathode with appropriate electrolyte additives for practical pouch batteries.展开更多
Cathode electrolyte interphase(CEI)has a significant impact on the performance of rechargeable batteries and is gaining increasing attention.Understanding the fundamental and detailed CEI formation mechanism is of cri...Cathode electrolyte interphase(CEI)has a significant impact on the performance of rechargeable batteries and is gaining increasing attention.Understanding the fundamental and detailed CEI formation mechanism is of critical importance for battery chemistry.Herein,a diverse of characterization tools are utilized to comprehensively analyze the composition of the CEI layer as well as its formation mechanism by LiCoO_(2)(LCO)cathode.We reveal that CEI is mainly composed of the reduction products of electrolyte and it only parasitizes the degraded LCO surface which has transformed into a disordered spinel structure due to oxygen loss and lithium depletion.Based on the energy diagram and the chemical potential analysis,the CEI formation process has been well explained,and the proposed CEI formation mechanism is further experimentally validated.This work highlights that the CEI formation process is nearly identical to that of the anode-electrolyte-interphase,both of which are generated due to the electrolyte directly in contact with the low chemical potential electrode material.This work can deepen and refresh our understanding of CEI.展开更多
As one of the most fundamental topics in reinforcement learning(RL),sample efficiency is essential to the deployment of deep RL algorithms.Unlike most existing exploration methods that sample an action from different ...As one of the most fundamental topics in reinforcement learning(RL),sample efficiency is essential to the deployment of deep RL algorithms.Unlike most existing exploration methods that sample an action from different types of posterior distributions,we focus on the policy sampling process and propose an efficient selective sampling approach to improve sample efficiency by modeling the internal hierarchy of the environment.Specifically,we first employ clustering methods in the policy sampling process to generate an action candidate set.Then we introduce a clustering buffer for modeling the internal hierarchy,which consists of on-policy data,off-policy data,and expert data to evaluate actions from the clusters in the action candidate set in the exploration stage.In this way,our approach is able to take advantage of the supervision information in the expert demonstration data.Experiments on six different continuous locomotion environments demonstrate superior reinforcement learning performance and faster convergence of selective sampling.In particular,on the LGSVL task,our method can reduce the number of convergence steps by 46.7%and the convergence time by 28.5%.Furthermore,our code is open-source for reproducibility.The code is available at https://github.com/Shihwin/SelectiveSampling.展开更多
Electrode interfacial degradations are the key challenges for high-performance rechargeable batteries,usually mitigated through surface modification/coating strategies.Herein,we report a novel mechanism to enhance the...Electrode interfacial degradations are the key challenges for high-performance rechargeable batteries,usually mitigated through surface modification/coating strategies.Herein,we report a novel mechanism to enhance the surface stability of P2 layered cathodes by introducing a high density of dopant-enriched precipitates.Based on microscopic analysis,we show that forming a high density of precipitates at the grain surface can effectively suppress surface cracking and corrosion,which not only improves the surface/interface stability but also effectively suppresses the intergranular cracking issue.Increasing the doping level can lead to a greater density of precipitates at the surface region,which results in higher surface stability and increased cycling stability of the P2 layered cathode for a sodium-ion battery.We further reveal that prolonged cycling can induce the formation of a precipitate-free surface region due to the loss of Zn dopant and Na.Our in-depth microanalysis reveals cycling-induced dynamic structural evolution of the P2 layered cathodes,highlighting that dopant segregation-induced precipitation is a new approach to achieving high interfacial stability.展开更多
基金the National Natural Science Foundation of China(12174015)the Natural Science Foundation of Beijing,China(2212003)+1 种基金the China National Petroleum Corporation Innovation Found(2021DQ02-1004)the National Natural Science Foundation of China(12102053)。
文摘Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured LCO,which demonstrates excellent cycling performance.Half-cell shows 94.2%capacity retention after 100 cycles at 3.0-4.6 V(vs.Li/Li^(+))cycling,and no capacity decay after 300 cycles for fullcell test(3.0-4.55 V).Based on comprehensive microanalysis and theoretical calculations,the degradation mechanisms and doping effects are systematically revealed.For the undoped LCO,high voltage cycling induces severe interfacial and bulk degradations,where cracks,stripe defects,fatigue H2 phase,and spinel phase are identified in grain bulk.For the doped LCO,Mg-doped surface shell can suppress the interfacial degradations,which not only stabilizes the surface structure by forming a thin rock-salt layer but also significantly improves the electronic conductivity,thus enabling superior rate performance.Bulk Al-doping can suppress the lattice"breathing"effect and the detrimental H3 to H1-3 phase transition,which minimizes the internal strain and defects growth,maintaining the layered structure after prolonged cycling.Combining theoretical calculations,this work deepens our understanding of the doping effects of Mg and Al,which is valuable in guiding the future material design of high voltage LCO.
基金supported by the National Natural Science Foundation of China(Grant No.:81573694)the Science Foundation of the Educational Department of Liaoning Province,China(Grant No.:LJKZ0920)。
文摘In traditional Chinese medicine(TCM),Euphorbia fischeriana Steud(E.fischeriana)and Euphorbia ebracteolata Hayata(E.ebracteolata),commonly referred to as“Langdu”,are widely extensively utilized for treating lymphatic tuberculosis and ringworm[1].Both plant species are perennial herbaceous plants mainly distributed in northeastern China,Mongolia,Russia(Siberia),and Republic of Korea[2].There have been many reports on the chemical constituents and pharmacological effects of the two plant species,which has made more and more researchers realize that there may be differences between E.fischeriana and E.ebracteolata.In some cases,long-term improper use of herbal medicines can even lead to life-threatening conditions[3,4].Therefore,it is essential to employ an effective technology to differentiate between these two plants based on their chemical constituents and biological activities,so as to reduce the harm caused by the mixing and misuse of medicinal materials.Therefore,the present paper describes a study of the differences between E.ebracteolata and E.fischeriana,using untargeted plant metabolomics and biological activity evaluations.This study aims to provide valuable insight into their equivalence and potential interchangeability in TCM and clinical medication.
文摘The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7].
基金the National Natural Science Foundation of China (No.12174015)the Natural Science Foundation of Beijing,China (No.2212003)+1 种基金the Innovative Research Group Project of the National Natural Science Foundation of China (CN) (No.51621003)the Beijing Municipal High Level Innovative Team Building Program (IDHT20190503)。
文摘Cathode electrolyte interphase(CEI)layer plays a crucial role in determining the electrochemical performance of lithium-ion batteries.Limited by the sensitive nature of CEI and the lack of characterization techniques,its dynamic evolution during cycling,its formation mechanism,and its specific impact on battery performance are not yet fully understood.Herein,we systematically investigate the dynamic evolution of CEI layer and its critical effect on the cycling performance of LiCoO_(2)cathode by diverse characterization techniques.We find that cycling voltage plays a key role in affecting CEI formation and evolution,and a critical potential(4.05 V vs.Li)is identified,which acts as the switching potential between CEI deposition and decomposition.We show that CEI starts deposition in the discharge process when the potential is below 4.05 V,and CEI decomposition occurs when the potential is higher than 4.05 V.When the battery is cycled below such a critical potential,a stable CEI layer is developed,which leads to superior cycling stability.When the battery is cycled above such a critical potential,a CEI-free cathode interface is observed,which also demonstrates good cycle stability.However,when the critical potential falls in the cycling voltage range,CEI deposition and decomposition are repeatedly switched on during cycling,leading to the dynamically unstable CEI layer.The unstable CEI layer causes continuous interfacial reaction and degradation,resulting in battery performance decay.Our work deepens the understanding of the CEI formation and evolution mechanisms,and clarifies the critical effect of CEI layer on cycling performance,which provides new insights into stabilizing the electrode-electrolyte interface for high-performance rechargeable batteries.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0402802,2017YFA0206700)the National Natural Science Foundation of China (Grant Nos. 21776265, 51902304, and 52072358)+2 种基金the Natural Science Foundation of Anhui Province (Grant No.1908085ME122)the Fundamental Research Funds for the Central Universities (Grant No. Wk2060140026)the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No.KF2020106)。
文摘Metal organic frameworks(MOFs) have been extensively investigated in Li-S batteries owing to high surface area, adjustable structures and abundant catalytic sites. Nevertheless, the insulating nature of traditional MOFs render retarded kinetics of polysulfides conversion, leading to insufficient utilization of sulfur. In comparison, conductive MOFs(c-MOFs) show great potential for promoting polysulfides transformation due to superb electronic conductivity. In this work, a nickel-catecholates based c-MOF, NiHHTP(HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), is designed to regulate surface chemistry of self-supported carbon paper for advanced Li-S batteries. Taking advantage of the porous structure and high conductivity, the as-prepared Ni-HHTP is conducive to synergising strengthening the chemisorption of polysulfides and accelerating the reaction kinetics in Li-S batteries, significantly mitigating the polysulfides diffusion from the non-encapsulated sulfur cathode, therefore promoting polysulfides transformation in Li-S batteries. This work points out a promising modification strategy for developing advanced sulfur cathode in Li-S batteries.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0206700 and 2017YFA0402802)the National Natural Science Foundation of China(Nos.21776265 and 51902304)Anhui Provincial Natural Science Foundation(No.1908085ME122).
文摘Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries.However,their working mechanisms are still mysterious,especially in practical high-voltage LiCoO_(2)pouch lithium-ion batteries.Herein,we adopt a tridentate ligandcontaining 1,3,6-hexanetricarbonitrile(HTCN)as an effective electrolyte additive to shed light on the mechanism of stabilizing high-voltage LiCoO_(2)cathode(4.5 V)through nitriles.The LiCoO_(2)/graphite pouch cells with the HTCN additive electrolyte possess superior cycling performance,90%retention of the initial capacity after 800 cycles at 25℃,and 72%retention after 500 cycles at 45℃,which is feasible for practical application.Such an excellent cycling performance can be attributed to the stable interface:The HTCN molecules with strong electron-donating ability participate in the construction of cathode-electrolyte interphase(CEI)through coordinating with Co ions,which suppresses the decomposition of electrolyte and improves the structural stability of LiCoO_(2)during cycling.In summary,the work recognizes a coordinating-based interphase-forming mechanism as an effective strategy to optimize the performance of high voltage LiCoO_(2)cathode with appropriate electrolyte additives for practical pouch batteries.
基金Natural Science Foundation of Beijing,China,Grant/Award Number:2212003National Natural Science Foundation of China for Youth Science Fund,Grant/Award Number:12204025+2 种基金National Natural Science Fund for Innovative Research Groups,Grant/Award Number:51621003Beijing municipal high level innovative team building program,Grant/Award Number:IDHT20190503The U.S.Department of Energy(DOE),Office of Science,Basic Energy Sciences,Division of Materials Sciences and Engineering,Synthesis and Processing Science Program,Grant/Award Number:10122。
文摘Cathode electrolyte interphase(CEI)has a significant impact on the performance of rechargeable batteries and is gaining increasing attention.Understanding the fundamental and detailed CEI formation mechanism is of critical importance for battery chemistry.Herein,a diverse of characterization tools are utilized to comprehensively analyze the composition of the CEI layer as well as its formation mechanism by LiCoO_(2)(LCO)cathode.We reveal that CEI is mainly composed of the reduction products of electrolyte and it only parasitizes the degraded LCO surface which has transformed into a disordered spinel structure due to oxygen loss and lithium depletion.Based on the energy diagram and the chemical potential analysis,the CEI formation process has been well explained,and the proposed CEI formation mechanism is further experimentally validated.This work highlights that the CEI formation process is nearly identical to that of the anode-electrolyte-interphase,both of which are generated due to the electrolyte directly in contact with the low chemical potential electrode material.This work can deepen and refresh our understanding of CEI.
基金supported by the National Natural Science Foundation of China (No.62176059)the Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01)Zhangjiang Lab,and the Shanghai Center for Brain Science and Brain-inspired Technology。
文摘As one of the most fundamental topics in reinforcement learning(RL),sample efficiency is essential to the deployment of deep RL algorithms.Unlike most existing exploration methods that sample an action from different types of posterior distributions,we focus on the policy sampling process and propose an efficient selective sampling approach to improve sample efficiency by modeling the internal hierarchy of the environment.Specifically,we first employ clustering methods in the policy sampling process to generate an action candidate set.Then we introduce a clustering buffer for modeling the internal hierarchy,which consists of on-policy data,off-policy data,and expert data to evaluate actions from the clusters in the action candidate set in the exploration stage.In this way,our approach is able to take advantage of the supervision information in the expert demonstration data.Experiments on six different continuous locomotion environments demonstrate superior reinforcement learning performance and faster convergence of selective sampling.In particular,on the LGSVL task,our method can reduce the number of convergence steps by 46.7%and the convergence time by 28.5%.Furthermore,our code is open-source for reproducibility.The code is available at https://github.com/Shihwin/SelectiveSampling.
基金P.Y.thank the National Natural Science Foundation of China(No.12174015)the Natural Science Foundation of Beijing,China(No.2212003)+4 种基金M.S.thank Innovative Research Group Project of the National Natural Science Foundation of China(grant no.51621003)Beijing Municipal High Level Innovative Team Building Program(IDHT20190503)K.W.thanks National Natural Science Foundation of China(No.12104024)China Postdoctoral Science Foundation(2020M680273)China National Postdoctoral Program for Innova-tive Talents(BX2021024).
文摘Electrode interfacial degradations are the key challenges for high-performance rechargeable batteries,usually mitigated through surface modification/coating strategies.Herein,we report a novel mechanism to enhance the surface stability of P2 layered cathodes by introducing a high density of dopant-enriched precipitates.Based on microscopic analysis,we show that forming a high density of precipitates at the grain surface can effectively suppress surface cracking and corrosion,which not only improves the surface/interface stability but also effectively suppresses the intergranular cracking issue.Increasing the doping level can lead to a greater density of precipitates at the surface region,which results in higher surface stability and increased cycling stability of the P2 layered cathode for a sodium-ion battery.We further reveal that prolonged cycling can induce the formation of a precipitate-free surface region due to the loss of Zn dopant and Na.Our in-depth microanalysis reveals cycling-induced dynamic structural evolution of the P2 layered cathodes,highlighting that dopant segregation-induced precipitation is a new approach to achieving high interfacial stability.