Organoids have emerged as a powerful platform for studying complex biological processes and diseases in vitro.However,most studies have focused on individual organoids,overlooking the inter-organ interactions in vivo ...Organoids have emerged as a powerful platform for studying complex biological processes and diseases in vitro.However,most studies have focused on individual organoids,overlooking the inter-organ interactions in vivo and limiting the physiological relevance of the models.To address this limitation,the development of a multi-organoid system has gained considerable attention.This system aims to recapitulate inter-organ communication and enable the study of complex physiological processes.This review provides a comprehensive overview of the recent advancements in organoid engineering and the emerging strategies for constructing a multi-organoid system.First,we highlight the critical mechanical,structural,and biochemical factors involved in designing suitable materials for the growth of different organoids.Additionally,we discuss the incorporation of dynamic culture environments to enhance organoid culture and enable inter-organoid communication.Furthermore,we explore techniques for manipulating organoid morphogenesis and spatial positioning of organoids to establish effective inter-organoid communication networks.We summarize the achievements in utilizing organoids to recapitulate inter-organ communication in vitro,including assembloids and microfluidic multiorganoid platforms.Lastly,we discuss the existing challenges and opportunities in developing a multi-organoid system from its technical bottlenecks in scalability to its applications toward complex human diseases.展开更多
基金Health and Medical Research Fund Scheme,Grant/Award Numbers:01150087,16172691Research Grants Council of Hong Kong ECS,Grant/Award Number:PolyU 251008/18 M+4 种基金GRF,Grant/Award Numbers:PolyU 151061/20 M,PolyU15100821MNFSC/RGC schemes,Grant/Award Number:N_PolyU 520/20ITF MHKJFS,Grant/Award Numbers:MHP/011/20,MHP/037/23,2023YFE0210500Hong Kong Polytechnic University Project of Strategic Importance,Grant/Award Number:ZE2CBrigham Research Institute。
文摘Organoids have emerged as a powerful platform for studying complex biological processes and diseases in vitro.However,most studies have focused on individual organoids,overlooking the inter-organ interactions in vivo and limiting the physiological relevance of the models.To address this limitation,the development of a multi-organoid system has gained considerable attention.This system aims to recapitulate inter-organ communication and enable the study of complex physiological processes.This review provides a comprehensive overview of the recent advancements in organoid engineering and the emerging strategies for constructing a multi-organoid system.First,we highlight the critical mechanical,structural,and biochemical factors involved in designing suitable materials for the growth of different organoids.Additionally,we discuss the incorporation of dynamic culture environments to enhance organoid culture and enable inter-organoid communication.Furthermore,we explore techniques for manipulating organoid morphogenesis and spatial positioning of organoids to establish effective inter-organoid communication networks.We summarize the achievements in utilizing organoids to recapitulate inter-organ communication in vitro,including assembloids and microfluidic multiorganoid platforms.Lastly,we discuss the existing challenges and opportunities in developing a multi-organoid system from its technical bottlenecks in scalability to its applications toward complex human diseases.