Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which th...Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.展开更多
Pylorus- and vagus nerve-preserving partial gastrectomy is important in improving the prognosis of early gastric cancer surgery, reducing surgical complications and improving the quality of life for such patients. In ...Pylorus- and vagus nerve-preserving partial gastrectomy is important in improving the prognosis of early gastric cancer surgery, reducing surgical complications and improving the quality of life for such patients. In the present case, pylorus- and vagus nerve-preserving partial gastrectomy was performed using the bipolar electrocautery dissection technique combined with D2 dissection along the lesser sac.展开更多
Developing high performance anode catalysts for oxygen evolution reaction (OER) and hydrazine oxidation reaction (HzOR) at large current density is an efficient pathway to produce hydrogen. Herein, we synthesize a FeW...Developing high performance anode catalysts for oxygen evolution reaction (OER) and hydrazine oxidation reaction (HzOR) at large current density is an efficient pathway to produce hydrogen. Herein, we synthesize a FeWO_(4)-WO_(3) heterostructure catalyst growing on nickel foam (FeWO_(4)-WO_(3)/NF) by a combination of hydrothermal and calcination method. It shows good catalytic activity with ultralow potentials for OER (ζ_(10) = 1.43 V, ζ_(1.000) = 1.56 V) and HzOR (ζ_(10) = −0.034 V, ζ_(1.000) = 0.164 V). Moreover, there is little performance degradation after being tested for _(10)0 h at 1,000 (OER) and _(10)0 (HzOR) mA·cm−2, indicating good stability. The superior performance could be attributed to the wolframite structure and heterostructure: The former provides a high electrical conductivity to ensure the electronic transfer capability, and the later induces interfacial electron redistribution to enhance the intrinsic activity and stability. The work offers a brand-new way to prepare good performance catalysts for OER and HzOR, especially at large current density.展开更多
基金supported by the National Key Research and Development Program on Monitoring, Early Warning and Prevention of Major Natural Disasters (Grant No. 2018YFC1506006)the National Natural Science Foundation of China (Project Nos. 41875108 and 41475037)
文摘Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.
文摘Pylorus- and vagus nerve-preserving partial gastrectomy is important in improving the prognosis of early gastric cancer surgery, reducing surgical complications and improving the quality of life for such patients. In the present case, pylorus- and vagus nerve-preserving partial gastrectomy was performed using the bipolar electrocautery dissection technique combined with D2 dissection along the lesser sac.
基金This work is supported by the National Natural Science Foundation of China(No.21872040)the Hundred Talents Program of Guangxi Universities,the Excellent Scholars and Innovation Team of Guangxi Universities,Guangxi Major Projects of Science and Technology(No.GXMPSTAA17202032),Guangxi Ba-Gui Scholars Program.
文摘Developing high performance anode catalysts for oxygen evolution reaction (OER) and hydrazine oxidation reaction (HzOR) at large current density is an efficient pathway to produce hydrogen. Herein, we synthesize a FeWO_(4)-WO_(3) heterostructure catalyst growing on nickel foam (FeWO_(4)-WO_(3)/NF) by a combination of hydrothermal and calcination method. It shows good catalytic activity with ultralow potentials for OER (ζ_(10) = 1.43 V, ζ_(1.000) = 1.56 V) and HzOR (ζ_(10) = −0.034 V, ζ_(1.000) = 0.164 V). Moreover, there is little performance degradation after being tested for _(10)0 h at 1,000 (OER) and _(10)0 (HzOR) mA·cm−2, indicating good stability. The superior performance could be attributed to the wolframite structure and heterostructure: The former provides a high electrical conductivity to ensure the electronic transfer capability, and the later induces interfacial electron redistribution to enhance the intrinsic activity and stability. The work offers a brand-new way to prepare good performance catalysts for OER and HzOR, especially at large current density.