期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Rapid genetic screening of Charcot-Marie-Tooth disease type 1A and hereditary neuropathy with liability to pressure palsies patients
1
作者 Xiaobo Li Xiaohong Zi +9 位作者 Lin Li Yajing Zhan Shunxiang huang Jin Li Xuning Li Xigui Li zhengmao hu Kun Xia Beisha Tang Ruxu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第32期2522-2527,共6页
We used the allele-specific PCR-double digestion method on peripheral myelin protein 22 (PMP22) to determine duplication and deletion mutations in the proband and family members of one family with Charcot-Marie-Toot... We used the allele-specific PCR-double digestion method on peripheral myelin protein 22 (PMP22) to determine duplication and deletion mutations in the proband and family members of one family with Charcot-Marie-Tooth disease type 1 and one family with hereditary neuropathy with liability to pressure palsies. The proband and one subclinical family member from the Charcot-Marie-Tooth disease type 1 family had a PMP22 gene duplication; one patient from the hereditary neuropathy with liability to pressure palsies family had a PMP22 gene deletion. Electron microscopic analysis of ultrathin sections of the superficial peroneal nerve from the two probands demonstrated demyelination and myelin sheath hyperplasia, as well as an 'onion-like' structure in the Charcot-Marie-Tooth disease type 1A patient. We observed an irregular thickened myelin sheath and 'mouse-nibbled'-Iike changes in the patient with hereditary neuropathy with liability to pressure palsies. In the Charcot-Marie-Tooth disease type 1A patient, nerve electrophysiological examination revealed moderate-to-severe reductions in the motor and sensory conduction velocities of the bilateral median nerve, ulnar nerve, tibial nerve, and sural nerve. Moreover, the compound muscle action potential amplitude was decreased. In the patient with hereditary neuropathy with liability to pressure palsies, the nerve conduction velocity of the bilateral tibial nerve and sural nerve was moderately reduced, and the nerve conduction velocity of the median nerve and ulnar nerve of both upper extremities was slightly reduced. 展开更多
关键词 Charcot-Marie-Tooth disease hereditary neuropathy with liability to pressure palsies peripheral myelin protein 22 gene mutation PCR-double digestion method myelin sheath action potentia neuropathology neural regeneration
下载PDF
Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis
2
作者 Yanling Liu Xi He +15 位作者 Yanchun Yuan Bin Li Zhen Liu Wanzhen Li Kaixuan Li Shuo Tan Quan Zhu Zhengyan Tang Feng Han Ziqiang Wu Lu Shen Hong Jiang Beisha Tang Jian Qiu zhengmao hu Junling Wang 《Frontiers of Medicine》 SCIE CSCD 2024年第1期68-80,共13页
Amyotrophic lateral sclerosis(ALS)is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons,and it demonstrates high clinical heterogeneity and complex genetic architecture.A vari... Amyotrophic lateral sclerosis(ALS)is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons,and it demonstrates high clinical heterogeneity and complex genetic architecture.A variation within TRMT2B(c.1356G>T;p.K452N)was identified to be associated with ALS in a family comprising two patients with juvenile ALS(JALS).Two missense variations and one splicing variation were identified in 10 patients with ALS in a cohort with 910 patients with ALS,and three more variants were identified in a public ALS database including 3317 patients with ALS.A decreased number of mitochondria,swollen mitochondria,lower expression of ND1,decreased mitochondrial complex I activities,lower mitochondrial aerobic respiration,and a high level of ROS were observed functionally in patient-originated lymphoblastoid cell lines and TRMT2B interfering HEK293 cells.Further,TRMT2B variations overexpression cells also displayed decreased ND1.In conclusion,a novel JALS-associated gene called TRMT2B was identified,thus broadening the clinical and genetic spectrum of ALS. 展开更多
关键词 TRMT2B amyotrophic lateral sclerosis mitochondrial complex I tRNA methylation reactive oxygen species
原文传递
Genomic landscapes of Chinese sporadic autism spectrum disordersrevealed by whole-genome sequencing 被引量:3
3
作者 Jinyu Wu Ping Yu +22 位作者 Xin Jin Xiu Xu Jinchen Li Zhongshan Li Mingbang Wang Tao Wang Xueli Wu Yi Jiang Wanshi Cai Junpu Mei Qingjie Min Qiong Xu Bingrui Zhou hui Guo Ping Wang Wenhao Zhou zhengmao hu Yingrui Li Tao Cai Yi Wang Kun Xia Yong-hui Jiang Zhong Sheng Sun 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第10期527-538,共12页
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with considerable clinical and genetic heterogeneity.In this study,we identified all classes of genomic variants from whole-genome sequencing (WGS) datas... Autism spectrum disorder (ASD) is a neurodevelopmental disorder with considerable clinical and genetic heterogeneity.In this study,we identified all classes of genomic variants from whole-genome sequencing (WGS) dataset of 32 Chinese trios with ASD,including de novo mutations,inherited variants,copy number variants (CNVs) and genomic structural variants.A higher mutation rate (Poisson test,P<2.2×10^(-16)) in exonic (1.37×10^(-8)) and 3'-UTR regions (1.42×10^(-8)) was revealed in comparison with that of whole genome (1.05×10^(-8)).Using an integrated model,we identified 87 potentially risk genes (P<0.01) from 4832 genes harboring various rare deleterious variants,including CHD8 and NRXN2,implying that the disorders may be in favor to multiple-hit.In particular,frequent rare inherited mutations of several microcephaly-associated genes (ASPM,WDR62,and ZNF335)were found in ASD.In chromosomal structure analyses,we found four de novo CNVs and one de novo chromosomal rearrangement event,including a de novo duplication of UBE3A-containing region at 15q11.2-q13.1,which causes Angelman syndrome and microcephaly,and a disrupted TNR due to de novo chromosomal translocation t (1;5) (q25.1;q33.2).Taken together,our results suggest that abnormalities of centrosomal function and chromatin remodeling of the microcephaly-associated genes may be implicated in pathogenesis of ASD.Adoption of WGS as a new yet efficient technique to illustrate the full genetic spectrum in complex disorders,such as ASD,could provide novel insights into pathogenesis,diagnosis and treatment. 展开更多
关键词 Autism spectrum disorders De novo mutations Microcephaly-associated genes Whole-genome sequencing
原文传递
Loss-of-function of KMT5B leads to neurodevelopmental disorder and impairs neuronal development and neurogenesis 被引量:1
4
作者 Guodong Chen Lin Han +8 位作者 Senwei Tan Xiangbin Jia huidan Wu Yingting Quan Qiumeng Zhang Bin Yu zhengmao hu Kun Xia hui Guo 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第9期881-890,共10页
Autism spectrum disorder(ASD)is a group of neurodevelopmental disorders that cause severe social,communication,and behavioral problems.Recent studies show that the variants of a histone methyltransferase gene KMT5B ca... Autism spectrum disorder(ASD)is a group of neurodevelopmental disorders that cause severe social,communication,and behavioral problems.Recent studies show that the variants of a histone methyltransferase gene KMT5B cause neurodevelopmental disorders(NDDs),including ASD,and the knockout of Kmt5b in mice is embryonic lethal.However,the detailed genotype-phenotype correlations and functional effects of KMT5B in neurodevelopment are unclear.By targeted sequencing of a large Chinese ASD cohort,analyzing published genome-wide sequencing data,and mining literature,we curated 39 KMT5B variants identified from NDD individuals.A genotype-phenotype correlation analysis for 10 individuals with KMT5B pathogenic variants reveals common symptoms,including ASD,intellectual disability,languages problem,and macrocephaly.In vitro knockdown of the expression of Kmt5b in cultured mouse primary cortical neurons leads to a decrease in neuronal dendritic complexity and an increase in dendritic spine density,which can be rescued by expression of human KMT5B but not that of pathogenic de novo missense mutants.In vivo knockdown of the Kmt5b expression in the mouse embryonic cerebral cortex by in utero electroporation results in decreased proliferation and accelerated migration of neural progenitor cells.Our findings reveal essential roles of histone methyltransferase KMT5B in neuronal development,prenatal neurogenesis,and neuronal migration. 展开更多
关键词 KMT5B Autism spectrum disorder Neurodevelopmental disorder NEUROGENESIS Neuronal migration
原文传递
Rare inherited missense variants of POGZ associate with autism risk and disrupt neuronal development
5
作者 Wenjing Zhao Jieqiong Tan +15 位作者 Tengfei Zhu Jianjun Ou Ying Li Lu Shen huidan Wu Lin Han Yanling Liu Xiangbin Jia Ting Bai Honghui Li Xiaoyan Ke Jingping Zhao Xiaobing Zou zhengmao hu hui Guo Kun Xia 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2019年第5期247-257,共11页
Excess de novo likely gene-disruptive and missense variants within dozens of genes have been identified in autism spectrum disorder(ASD)and other neurodevelopmental disorders.However,many rare inherited missense varia... Excess de novo likely gene-disruptive and missense variants within dozens of genes have been identified in autism spectrum disorder(ASD)and other neurodevelopmental disorders.However,many rare inherited missense variants of these high-risk genes have not been thoroughly evaluated.In this study,we analyzed the rare missense variant burden of POGZ in a large cohort of ASD patients from the Autism Clinical and Genetic Resources in China(ACGC)and further dissected the functional effect of diseaseassociated missense variants on neuronal development.Our results showed a significant burden of rare missense variants in ASD patients compared to the control population(P=4.6×10-5,OR=3.96),and missense variants in ASD patients showed more severe predicted functional outcomes than those in controls.Furthermore,by leveraging published large-scale sequencing data of neurodevelopmental disorders(NDDs)and sporadic case reports,we identified 8 de novo missense variants of POGZ in NDD patients.Functional analysis revealed that two inherited,but not de novo,missense variants influenced the cellular localization of POGZ and failed to rescue the defects in neurite and dendritic spine development caused by Pogz knockdown in cultured mouse primary cortical neurons.Significantly,L1CAM,an autism candidate risk gene,is differentially expressed in POGZ deficient cell lines.Reduced expression of L1cam was able to partially rescue the neurite length defects caused by Pogz knockdown.Our study showed the important roles of rare inherited missense variants of POGZ in ASD risk and neuronal development and identified the potential downstream targets of POGZ,which are important for further molecular mechanism studies. 展开更多
关键词 AUTISM POGZ NEURONAL development MISSENSE VARIANTS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部