In this paper,the gas and seed flow characters in the air-blowing seed metering device are investigated by using the coupled computational fluid dynamics and discrete element method(CFD-DEM)in three dimensions(3D).The...In this paper,the gas and seed flow characters in the air-blowing seed metering device are investigated by using the coupled computational fluid dynamics and discrete element method(CFD-DEM)in three dimensions(3D).The method of establishing boundary model based on the computer-aided design(CAD)drawing,has been used to build the boundary model of seed metering device.The 3D laser scanning technique and multi-element method are adopted to establish the particle model.Through a combined numerical and experimental effort,using 3D CFD-DEM software,which is based on the in-house codes,the mechanisms governing the gas and solid dynamic behaviors in the seed metering device have been studied.The gas velocity field and the effect of different rotational speeds and air pressures on the seeding performance and particle velocity have been studied,similar agreements between numerical and experimental results are gained.This reveals that the 3D CFD-DEM model established is able to predict the performance of the air-blowing seed metering device.It can be used to design and optimize the air-blowing seed metering device and other similar agriculture devices.展开更多
As a class of new emerged semiconductors,MHPs exhibit many excellent photoelectronic properties,which are superior to most conventional semiconductor nanocrystals(NCs).Particularly,MHPs have received extensive attenti...As a class of new emerged semiconductors,MHPs exhibit many excellent photoelectronic properties,which are superior to most conventional semiconductor nanocrystals(NCs).Particularly,MHPs have received extensive attention and brought new opportunities for the development of photocatalysis.Over the past few years,numerous efforts have been made to design and prepare MHP-based materials for a wide range of applications in photocatalysis,ranging from photocatalytic H_(2) generation,photocatalytic CO_(2) reduction,photocatalytic organic synthesis and pollutant degradation.In this review,recent advances in the development of MHP-based materials are summarized from the standpoint of photocatalysis.A brief outlook of this field has been proposed to point out some important challenges and possible solutions.This review suggests that the new family of MHP photocatalysts provide a new paradigm in efficient artificial photosynthesis.展开更多
Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to t...Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to the edge servers,which train the vehicles’data to update local models and then return the result to vehicles to avoid sharing the original data.However,the cache queue in the edge is limited and the channel between edge server and each vehicle is time-varying.Thus,it is challenging to select a suitable number of vehicles to ensure that the uploaded data can keep a stable cache queue in edge server while maximizing the learning accuracy.Moreover,selecting vehicles with different resource statuses to update data will affect the total amount of data involved in training,which further affects the model accuracy.In this paper,we propose a vehicle selection scheme,which maximizes the learning accuracy while ensuring the stability of the cache queue,where the statuses of all the vehicles in the coverage of edge server are taken into account.The performance of this scheme is evaluated through simulation experiments,which indicates that our proposed scheme can perform better than the known benchmark scheme.展开更多
Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOF...Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOFs still suffer from poor stability,insufficient conductivity,and low utilization of active sites.One strategy to circumvent these issues is to optimize MOFs via designing composites.Here,the design principle from the viewpoint of the intrinsic relationships among various components will be illuminated to acquire the synergistic effects,including two working modes:(1)MOFs with assistant components,(2)MOFs with other function components.This review introduces recent research progress of MOF-based composites with their typical applications in energy conversion(catalysis)and storage(supercapacitor and ion battery).Finally,the challenges and future prospects of MOF-based composites will be discussed in terms of maximizing composite properties.展开更多
Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 redu...Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 reduction; however, most metal cocatalysts mainly produce CO and H2. Herein, we report a cocatalyst hydridation approach for significantly enhancing the photocatalytic reduction of CO2 into CH4. Hydriding Pd cocatalysts into PdH0.43 played a dual role in performance enhancement. As revealed by our isotopic labeling experiments, the PdH0.43 hydride cocatalysts reduced H2 evolution, which suppressed the H2 production and facilitated the conversion of the CO intermediate into the final product: CH4. Meanwhile, hydridation promoted the electron trapping on the cocatalysts, improving the charge separation. This approach increased the photocatalytic selectivity in CH4 production from 3.2% to 63.6% on Pd{100} and from 15.6% to 73.4% on Pd{111}. The results provide insights into photocatalytic mechanism studies and introduce new opportunities for designing materials towards photocatalytic CO2 conversion.展开更多
Spouted bed has drawn much attention due to its good heat and mass transfer efficiency in many chemical units.Investigating the flow patterns and heat and mass transfer inside a spouted bed can help optimize the spout...Spouted bed has drawn much attention due to its good heat and mass transfer efficiency in many chemical units.Investigating the flow patterns and heat and mass transfer inside a spouted bed can help optimize the spouting process.Therefore,in this study,the effects of particle shape on the hydrodynamics and heat transfer in a spouted bed are investigated.This is done by using a validated computational fluid dynamics-discrete element method(CFD-DEM)model,considering volume-equivalent spheres and oblate and prolate spheroids.The results are analysed in detail in terms of the flow pattern,microstruc-ture,and heat transfer characteristics.The numerical results show that the prolate spheroids(Ar=2.4)form the largest bubble from the beginning of the spouting process and rise the highest because the fluid drag forces can overcome the interlocking and particle-particle frictional forces.Compared with spherical particles,ellipsoidal spheroids have better mobility because of the stronger rotational kinetic energy resulting from the rough surfaces and nonuniform torques.In addition,the oblate spheroid system exhibits better heat transfer performance benefiting from the larger surface area,while prolate spheroids have poor heat transfer efficiency because of their orientation distribution.These findings can serve as a reference for optimizing the design and operation of complex spouted beds.展开更多
Cathodic oxygen reduction reaction (ORR) is a highly important electrochemical reaction in renewable-energy technologies. In general, the surface area, exposed facets and electrical conductivity of catalysts all pla...Cathodic oxygen reduction reaction (ORR) is a highly important electrochemical reaction in renewable-energy technologies. In general, the surface area, exposed facets and electrical conductivity of catalysts all play important roles in determining their electrocatalytic activities, while their performance durability can be improved by integration with supporting materials. In this work we have developed a method to synthesize hybrid structures between PtPd bimetallic nanocages and graphene by employing selective epitaxial growth of single-crystal Pt shells on Pd nanocubes supported on reduced graphene oxide (rGO), followed by Pd etching. The hollow nature, {100} surface facets and bimetallic composition of PtPd nanocages, together with the good conductivity and stability of graphene, enable high electrocatalytic performance in ORR. The obtained PtPd nanocage-rGO structures exhibit mass activity (0.534 A.m-1) and which are 4.4 times and 3.9 times greater than the specific activity (0.482 mA-cm-2) corresponding values for Pt/C.展开更多
Gaofen-3(GF-3)is the first Chinese spaceborne multi-polarization synthetic aperture radar(SAR)instrument at C-band(5.43 GHz).In this paper,we use data collected from GF-3 to observe Super Typhoon Lekima(2019)in the Ea...Gaofen-3(GF-3)is the first Chinese spaceborne multi-polarization synthetic aperture radar(SAR)instrument at C-band(5.43 GHz).In this paper,we use data collected from GF-3 to observe Super Typhoon Lekima(2019)in the East China Sea.Using a VH-polarized wide ScanSAR(WSC)image,ocean surface wind speeds at 100m horizontal resolution are obtained at 21:56:59 UTC on 8 August 2019,with the maximum wind speed,38.9 m·s^(-1).Validating the SAR-retrieved winds with buoymeasured wind speeds,we find that the root mean square error(RMSE)is 1.86 m·s^(-1),and correlation coefficient,0.92.This suggests that wind speeds retrieved from GF-3 SAR are reliable.Both the European Centre for MediumRange Weather Forecasts(ECMWF)fine grid operational forecast products with spatial resolution,and China Global/Regional Assimilation and Prediction Enhance System(GRAPES)have good performances on surface wind prediction under weak wind speed condition(<24 m·s^(-1)),but underestimate the maximum wind speed when the storm is intensified as a severe tropical storm(>24m·s^(-1)).With respect to SAR-retrieved wind speeds,the RMSEs are 5.24 m·s^(–1) for ECMWF and 5.17 m·s^(–1) for GRAPES,with biases of 4.16 m·s^(–1) for ECMWF and 3.84 m·s^(-1)for GRAPES during Super Typhoon Lekima(2019).展开更多
Spaceborne synthetic aperture radar(SAR)can provide unique capabilities to measure ocean surface winds under tropical cyclones(TCs),on synoptic scales,and at a very high spatial resolution.In this paper,we first discu...Spaceborne synthetic aperture radar(SAR)can provide unique capabilities to measure ocean surface winds under tropical cyclones(TCs),on synoptic scales,and at a very high spatial resolution.In this paper,we first discuss the accuracy and reliability of SAR-retrieved TC marine winds.The results show that wind retrievals from SAR images are in good agreement with Stepped Frequency Microwave Radiometer(SFMR)measurements,with root-mean-square error(RMSE)and correlation coefficient(CC)of 3.52 m s^(−1) and 0.91,respectively.Based on the marine winds retrieved from SAR images,a relatively simple method is applied to extract the storm intensity(maximum wind speed)and wind radii(R34,R50,and R64)from 234 cross-polarized SAR images,in the Northwest Pacific Ocean from 2015 to 2023.The SAR-retrieved TC wind radii and intensities are compared with the best-track reports,with RMSEs for R34,R50,and R64 being 48.32,41.88,and 38.51 km,and CCs being 0.87,0.83,and 0.65,respectively.In terms of TC intensity,the RMSE and bias between SAR estimates and best-track data are 7.32 and 0.38 m s^(−1),respectively.For TC Surigae(2023),we found that employing a combination of multiplatform SARs,acquired within a short time interval,has the potential to simultaneously measure the intensity and wind structure parameters.In addition,for a storm with a long life cycle,the multitemporal synergistic SARs can be used to investigate fine-scale features of the TC ocean winds,as well as the evolution of TC surface wind intensities and wind structures.展开更多
基金The authors would like to express appreciation for the support of Australia Research Council(IH140100035)Nature Science Foundation of China(51675218)+1 种基金Doctor Starting Foundation of Jiangxi University of Science and Technology(JXXJBS17078)Science and Technology Project of the Education Department of Jiangxi Province(GJJ180426).
文摘In this paper,the gas and seed flow characters in the air-blowing seed metering device are investigated by using the coupled computational fluid dynamics and discrete element method(CFD-DEM)in three dimensions(3D).The method of establishing boundary model based on the computer-aided design(CAD)drawing,has been used to build the boundary model of seed metering device.The 3D laser scanning technique and multi-element method are adopted to establish the particle model.Through a combined numerical and experimental effort,using 3D CFD-DEM software,which is based on the in-house codes,the mechanisms governing the gas and solid dynamic behaviors in the seed metering device have been studied.The gas velocity field and the effect of different rotational speeds and air pressures on the seeding performance and particle velocity have been studied,similar agreements between numerical and experimental results are gained.This reveals that the 3D CFD-DEM model established is able to predict the performance of the air-blowing seed metering device.It can be used to design and optimize the air-blowing seed metering device and other similar agriculture devices.
基金financially supported in part by the National Natural Science Foundation of China(21701143,21975223,51802169)Natural Science Foundation of Zhejiang Province(LGG19B010002)Natural Science Foundation of Shandong Province(Grant ZR2018BEM007)。
文摘As a class of new emerged semiconductors,MHPs exhibit many excellent photoelectronic properties,which are superior to most conventional semiconductor nanocrystals(NCs).Particularly,MHPs have received extensive attention and brought new opportunities for the development of photocatalysis.Over the past few years,numerous efforts have been made to design and prepare MHP-based materials for a wide range of applications in photocatalysis,ranging from photocatalytic H_(2) generation,photocatalytic CO_(2) reduction,photocatalytic organic synthesis and pollutant degradation.In this review,recent advances in the development of MHP-based materials are summarized from the standpoint of photocatalysis.A brief outlook of this field has been proposed to point out some important challenges and possible solutions.This review suggests that the new family of MHP photocatalysts provide a new paradigm in efficient artificial photosynthesis.
基金supported in part by the National Natural Science Foundation of China(No.61701197)in part by the open research fund of State Key Laboratory of Integrated Services Networks(No.ISN23-11)+3 种基金in part by the National Key Research and Development Program of China(No.2021YFA1000500(4))in part by the 111 Project(No.B23008)in part by the Future Network Scientific Research Fund Project(FNSRFP2021-YB-11)in part by the project of Changzhou Key Laboratory of 5G+Industrial Internet Fusion Application(No.CM20223015)。
文摘Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to the edge servers,which train the vehicles’data to update local models and then return the result to vehicles to avoid sharing the original data.However,the cache queue in the edge is limited and the channel between edge server and each vehicle is time-varying.Thus,it is challenging to select a suitable number of vehicles to ensure that the uploaded data can keep a stable cache queue in edge server while maximizing the learning accuracy.Moreover,selecting vehicles with different resource statuses to update data will affect the total amount of data involved in training,which further affects the model accuracy.In this paper,we propose a vehicle selection scheme,which maximizes the learning accuracy while ensuring the stability of the cache queue,where the statuses of all the vehicles in the coverage of edge server are taken into account.The performance of this scheme is evaluated through simulation experiments,which indicates that our proposed scheme can perform better than the known benchmark scheme.
基金the National Natural Science Foundation of China(NNSFC grants 21707093).
文摘Metal-organic frameworks(MOFs)with orderly porous structure,large surface area,high electrochemical response and chemical tunability have been widely studied for energy conversion and storage.However,most reported MOFs still suffer from poor stability,insufficient conductivity,and low utilization of active sites.One strategy to circumvent these issues is to optimize MOFs via designing composites.Here,the design principle from the viewpoint of the intrinsic relationships among various components will be illuminated to acquire the synergistic effects,including two working modes:(1)MOFs with assistant components,(2)MOFs with other function components.This review introduces recent research progress of MOF-based composites with their typical applications in energy conversion(catalysis)and storage(supercapacitor and ion battery).Finally,the challenges and future prospects of MOF-based composites will be discussed in terms of maximizing composite properties.
基金Acknowledgements This work was financially supported in part by the National Natural Science Foundation of China (Nos. 21471141, U1532135, and 21603191), CAS Key Research Program of Frontier Sciences (No. QYZDB- SSW-SLH018), Zhejiang Provincial Natural Science Foundation (No. LQ16B010001), Recruitment Program of Global Experts, and CAS Hundred Talent Program XAFS measurements were performed at the beamline BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF), China.
文摘Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 reduction; however, most metal cocatalysts mainly produce CO and H2. Herein, we report a cocatalyst hydridation approach for significantly enhancing the photocatalytic reduction of CO2 into CH4. Hydriding Pd cocatalysts into PdH0.43 played a dual role in performance enhancement. As revealed by our isotopic labeling experiments, the PdH0.43 hydride cocatalysts reduced H2 evolution, which suppressed the H2 production and facilitated the conversion of the CO intermediate into the final product: CH4. Meanwhile, hydridation promoted the electron trapping on the cocatalysts, improving the charge separation. This approach increased the photocatalytic selectivity in CH4 production from 3.2% to 63.6% on Pd{100} and from 15.6% to 73.4% on Pd{111}. The results provide insights into photocatalytic mechanism studies and introduce new opportunities for designing materials towards photocatalytic CO2 conversion.
基金the financial supports from the National Natural Science Foundation ofChina(grant No.51904122)the Key Project of Jiangxi Provincial Research and Development(grant No.20192BBHL80016)+2 种基金the jiangxi Provincial Natural Science Foundation(grant No.20212BAB214023)the Opening Research Project of State Key Laboratory of Multiphase Flow in Power Engineering(grant No.SKLMF-KF-1901)the China Postdoctoral Science Foundation Funding(grant No.2021M690975).
文摘Spouted bed has drawn much attention due to its good heat and mass transfer efficiency in many chemical units.Investigating the flow patterns and heat and mass transfer inside a spouted bed can help optimize the spouting process.Therefore,in this study,the effects of particle shape on the hydrodynamics and heat transfer in a spouted bed are investigated.This is done by using a validated computational fluid dynamics-discrete element method(CFD-DEM)model,considering volume-equivalent spheres and oblate and prolate spheroids.The results are analysed in detail in terms of the flow pattern,microstruc-ture,and heat transfer characteristics.The numerical results show that the prolate spheroids(Ar=2.4)form the largest bubble from the beginning of the spouting process and rise the highest because the fluid drag forces can overcome the interlocking and particle-particle frictional forces.Compared with spherical particles,ellipsoidal spheroids have better mobility because of the stronger rotational kinetic energy resulting from the rough surfaces and nonuniform torques.In addition,the oblate spheroid system exhibits better heat transfer performance benefiting from the larger surface area,while prolate spheroids have poor heat transfer efficiency because of their orientation distribution.These findings can serve as a reference for optimizing the design and operation of complex spouted beds.
文摘Cathodic oxygen reduction reaction (ORR) is a highly important electrochemical reaction in renewable-energy technologies. In general, the surface area, exposed facets and electrical conductivity of catalysts all play important roles in determining their electrocatalytic activities, while their performance durability can be improved by integration with supporting materials. In this work we have developed a method to synthesize hybrid structures between PtPd bimetallic nanocages and graphene by employing selective epitaxial growth of single-crystal Pt shells on Pd nanocubes supported on reduced graphene oxide (rGO), followed by Pd etching. The hollow nature, {100} surface facets and bimetallic composition of PtPd nanocages, together with the good conductivity and stability of graphene, enable high electrocatalytic performance in ORR. The obtained PtPd nanocage-rGO structures exhibit mass activity (0.534 A.m-1) and which are 4.4 times and 3.9 times greater than the specific activity (0.482 mA-cm-2) corresponding values for Pt/C.
基金supported in part by the Natural Science Foundation of Zhejiang Province(No.LQ21D060001)the Fengyun Application Pioneering Project(No.FY-APP-2021.0105)+8 种基金the Science and Technology Project of Zhejiang Meteorological Bureau(No.2021YB07)the Innovation and Development Project of China Meteorological Administration(No.CXFZ2022J040)the National Key R&D Program of China(No.2018YFC1506404)the Basic Public Welfare Research Program of Zhejiang Province(No.LGF18D050001)the Climate Change Special Program of China Meteorological Administration(No.CCSF202036)the Key Research and Development Program of Zhejiang Province(No.2021C02036)the Research Program from Science and the Technology Committee of Shanghai(No.19dz1200101)the Shanghai Typhoon Institute(No.2021JB05)the open fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,MNR(No.QNHX2012).
文摘Gaofen-3(GF-3)is the first Chinese spaceborne multi-polarization synthetic aperture radar(SAR)instrument at C-band(5.43 GHz).In this paper,we use data collected from GF-3 to observe Super Typhoon Lekima(2019)in the East China Sea.Using a VH-polarized wide ScanSAR(WSC)image,ocean surface wind speeds at 100m horizontal resolution are obtained at 21:56:59 UTC on 8 August 2019,with the maximum wind speed,38.9 m·s^(-1).Validating the SAR-retrieved winds with buoymeasured wind speeds,we find that the root mean square error(RMSE)is 1.86 m·s^(-1),and correlation coefficient,0.92.This suggests that wind speeds retrieved from GF-3 SAR are reliable.Both the European Centre for MediumRange Weather Forecasts(ECMWF)fine grid operational forecast products with spatial resolution,and China Global/Regional Assimilation and Prediction Enhance System(GRAPES)have good performances on surface wind prediction under weak wind speed condition(<24 m·s^(-1)),but underestimate the maximum wind speed when the storm is intensified as a severe tropical storm(>24m·s^(-1)).With respect to SAR-retrieved wind speeds,the RMSEs are 5.24 m·s^(–1) for ECMWF and 5.17 m·s^(–1) for GRAPES,with biases of 4.16 m·s^(–1) for ECMWF and 3.84 m·s^(-1)for GRAPES during Super Typhoon Lekima(2019).
基金Supported by the National Natural Science Foundation of China(42305153)Zhejiang Provincial Natural Science Foundation of China(LQ21D060001 and LZJMZ23D05000)+6 种基金East China Meteorological Science and Technology Collaborative Innovation Foundation Cooperation Project(QYHZ202307)Fengyun Application Pioneering Project(FY-APP-2021.0105)Science and Technology Project of Zhejiang Meteorological Bureau(2021YB07,2022ZD06,and 2023YB06)Open Project of Key Laboratory of Meteorological Disaster,Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(KLME202408)Open Grants of the State Key Laboratory of Severe Weather(2024LASW-B22)Innovation and Development Project of China Meteorological Administration(CXFZ2022J040)Youth Innovation Team Fund of China Meteorological Administration(CMA2023QN12)。
文摘Spaceborne synthetic aperture radar(SAR)can provide unique capabilities to measure ocean surface winds under tropical cyclones(TCs),on synoptic scales,and at a very high spatial resolution.In this paper,we first discuss the accuracy and reliability of SAR-retrieved TC marine winds.The results show that wind retrievals from SAR images are in good agreement with Stepped Frequency Microwave Radiometer(SFMR)measurements,with root-mean-square error(RMSE)and correlation coefficient(CC)of 3.52 m s^(−1) and 0.91,respectively.Based on the marine winds retrieved from SAR images,a relatively simple method is applied to extract the storm intensity(maximum wind speed)and wind radii(R34,R50,and R64)from 234 cross-polarized SAR images,in the Northwest Pacific Ocean from 2015 to 2023.The SAR-retrieved TC wind radii and intensities are compared with the best-track reports,with RMSEs for R34,R50,and R64 being 48.32,41.88,and 38.51 km,and CCs being 0.87,0.83,and 0.65,respectively.In terms of TC intensity,the RMSE and bias between SAR estimates and best-track data are 7.32 and 0.38 m s^(−1),respectively.For TC Surigae(2023),we found that employing a combination of multiplatform SARs,acquired within a short time interval,has the potential to simultaneously measure the intensity and wind structure parameters.In addition,for a storm with a long life cycle,the multitemporal synergistic SARs can be used to investigate fine-scale features of the TC ocean winds,as well as the evolution of TC surface wind intensities and wind structures.