The conversion of CO_(2) into value‐added chemicals and fuels via electrochemical methods paves a promising avenue to mitigate both energy and environmental crisis.Among all the carbonaceous products derived from CO_...The conversion of CO_(2) into value‐added chemicals and fuels via electrochemical methods paves a promising avenue to mitigate both energy and environmental crisis.Among all the carbonaceous products derived from CO_(2) electroreduction,CH_(4) is one of the most important carriers for chemical bond energy storage due to the highest value of mass heat.Herein,starting from the proposed reaction mechanisms reported previously,we summarized the recent progresses on CO_(2) electroreduction into CH_(4) from the perspective of catalyst design strategies including construction of subnanometer catalytic sites,modulation of interfaces,in‐situ structural evolution,and engineering of tandem catalysts.On the basis of both the previously theoretical predictions and experimental results,we aimed to gain insights into the reaction mechanism for the formation of CH_(4),which,in turn,would provide guidelines for the design of highly efficient catalysts.展开更多
文摘The conversion of CO_(2) into value‐added chemicals and fuels via electrochemical methods paves a promising avenue to mitigate both energy and environmental crisis.Among all the carbonaceous products derived from CO_(2) electroreduction,CH_(4) is one of the most important carriers for chemical bond energy storage due to the highest value of mass heat.Herein,starting from the proposed reaction mechanisms reported previously,we summarized the recent progresses on CO_(2) electroreduction into CH_(4) from the perspective of catalyst design strategies including construction of subnanometer catalytic sites,modulation of interfaces,in‐situ structural evolution,and engineering of tandem catalysts.On the basis of both the previously theoretical predictions and experimental results,we aimed to gain insights into the reaction mechanism for the formation of CH_(4),which,in turn,would provide guidelines for the design of highly efficient catalysts.