Contaminated gases emissions from livestock industry are becoming one of the most significant contributors to the increasingly serious environmental pollution.To find a way to reduce gases emissions,it is essential to...Contaminated gases emissions from livestock industry are becoming one of the most significant contributors to the increasingly serious environmental pollution.To find a way to reduce gases emissions,it is essential to reveal the factors that can affect the gases emissions.In this study,the concentrations of typical gases(including ammonia(NH_(3)),carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S),and sulfur dioxide(SO_(2)))generated from naturally-ventilated dairy cow barns were detected through the sample-data method in Tianjin,northern China.Indoor environmental conditions,such as temperature(T)and relative humidity(RH),were measured simultaneously.After applying the carbon dioxide mass balance method,ammonia,hydrogen sulfide and sulfur dioxide emissions were determined.The correlation analysis and regression analysis between the climate condition and gas emissions were conducted to assess the data collected in dairy cow barns during the whole study period.There was a significant relationship between environmental conditions and gas emissions.NH3,H2S and SO_(2) emissions from the building are in the range of 0.98-2.36 g/LU·h,0-0.034 g/LU·h,and 0-0.069 g/LU·h,respectively.The numerical analysis shows that the NH3 emission is highly correlated with the temperature and relative humidity.The ventilation rate shows a positive correlation with all the three gases.展开更多
Pullets often raised in cage system from week 1 to week 13 in China,when transferred to aviary system after,there will be a problem with adapt.A large cage aviary unit(LCAU)system was developed,which allocated with fa...Pullets often raised in cage system from week 1 to week 13 in China,when transferred to aviary system after,there will be a problem with adapt.A large cage aviary unit(LCAU)system was developed,which allocated with facilities such as ramps to help cage reared hens to adapt to the multi-tier space.To investigate hens’adaptability to the new system,space use over time in the LCAU system during the first 10 days after hens transferred were recorded,instantaneous scan sampling and continuous focal sampling were used to assess the behavior difference of hens between the LCAU and conventional cage(CC)systems.On the first day of arrival,10.03% of hens reached the second tier(S2)and the third tier(S3)of the aviary.During the observation period,an average of 2.42% of hens climbed and stayed at the upper tiers every day.Space allowance on floor of the first tier(S1)increased from 444.62 cm^(2)/hen(91 d)to 586.32 cm^(2)/hen(100 d),which was more than 540 cm^(2)/hen in the CC system.Comfort behaviors in the LCAU system were significantly more than in the CC system(p<0.01)and hens performed more comfort behaviors with the increase of days after transferred.Hens ate and drank less in the LCAU system in the beginning,however,with the increasing use of upper space,hens ate and drank more and more in the LCAU system during the 10 days after transferred from CC system.Consequently,there were no difference of feed behavior between the CC and LCAU systems(p>0.05)on the last 5 days of the whole observing period.The results indicated that hens gradually learned to use the 3-dimensional space in the initial settling-in period and,gained a good welfare condition in LCAU system.Further studies are needed to investigate the three-dimensional preferences and behavior expression in difference period to bridge the gap in knowledge of space use capacity among adult laying hens.展开更多
Reliable estimation of the ventilation rate(VR)in intensive livestock buildings is necessary for studying building environmental control strategies and predicting indoor air quality and air emissions.As direct air exc...Reliable estimation of the ventilation rate(VR)in intensive livestock buildings is necessary for studying building environmental control strategies and predicting indoor air quality and air emissions.As direct air exchange measurements are time-consuming and expensive,it is environmentally inefficient to measure livestock building VR continuously in practice.Hence,indirect VR estimation methods have been widely used in modelling environmental control and air emissions,and also to measure airflow in the field.The accuracy of indirect measurement methods needs to be evaluated by comparing with direct measurements.In this study,the direct and indirect methods of determining hourly and daily mean VRs were applied to a mechanically-ventilated dairy free stall barn monitored by the 24-month National Air Emissions Monitoring Study.The direct method was used to continuously monitor fan rotational speeds,and differential static pressures,coupled with periodic in-situ fan performance assessments,to calculate the VR.The indirect method consisted of estimating the VR using CO2 concentration measurements and the CO2 mass balance method.The average daily and hourly means(mean±SD)of directly measured barn ventilation rates for two years were(246±73)m3/s and(245±77)m3/s,respectively.The average daily and hourly means(mean±SD)of barn ventilation rates estimated by the CO2 mass balance method were(287±93.4)m3/s and(287±118)m3/s,respectively.Correlation analyses showed a strong correlation between the indirect CO2 mass balance method and direct measurement methods(r=0.93 for daily means and r=0.85 for hourly means).展开更多
To study the influence of ripple cross angles on the resistance of wet curtains,wet curtains with different ripple cross angles(45°/45°,45°/15°)were tested on agricultural ventilation equipment per...To study the influence of ripple cross angles on the resistance of wet curtains,wet curtains with different ripple cross angles(45°/45°,45°/15°)were tested on agricultural ventilation equipment performance testing benches,and the static pressure drop under different wind speeds(1-3 m/s)was determined.Four turbulence models(κ-ε,RNGκ-ε,κ-ω,SSTκ-ω)were adopted for numerical simulations of the two types of wet curtain,and the simulations’results were compared with those of experiments.The average errors found are 41.1%,48.7%,27.1%,and 27.8%,respectively,and theκ-ωmodel is found to be the most suitable one for the calculation of wet curtain resistance among the four turbulence models.By using theκ-ωturbulence model,the static pressure drop performances of wet curtains with ripple cross angles 45°/35°and 45°/25°were calculated.Resistance increases with wind speed and ripple cross angles,and a large ripple cross angle has a higher resistance growth rate with increasing wind speed.展开更多
The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.How...The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.However,the current sterilization technology presents several drawbacks,including time-consuming procedures,chemical residues,and challenges in treating the sewage after rinsing.In this study,a novel cleaning and sterilization method that combines slightly acidic electrolyzed water and high pressure water-jet was developed.An orthogonal test was conducted to examine the correlation between high-pressure conditions and the various non-structural parameters on the efficacy of sterilization rate.In a field test,the effectiveness of the technology in cleaning pig transfer vehicles was evaluated by the total plate count and variations of community composition.The findings revealed that the combination of process parameters,including an available chlorine concentration of 200 mg/L,rinsing pressure of 170 bar,rinsing duration of 10 s,and residence time of 15 min,resulted in a removal rate of colony concentration on the surface of pig transfer vehicles of(96.50±0.91)%.Moreover,it was demonstrated to effectively inhibit a variety of pathogenic bacteria.The innovative cleaning system has the potential to replace traditional methods and reduces pollution while saving time and labor.It introduces a novel approach for sterilization of transportation in livestock and poultry farms as well as the biosafety construction of the animal husbandry.展开更多
基金This work was supported in part by China Agriculture Research System under Grant CARS-36.
文摘Contaminated gases emissions from livestock industry are becoming one of the most significant contributors to the increasingly serious environmental pollution.To find a way to reduce gases emissions,it is essential to reveal the factors that can affect the gases emissions.In this study,the concentrations of typical gases(including ammonia(NH_(3)),carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S),and sulfur dioxide(SO_(2)))generated from naturally-ventilated dairy cow barns were detected through the sample-data method in Tianjin,northern China.Indoor environmental conditions,such as temperature(T)and relative humidity(RH),were measured simultaneously.After applying the carbon dioxide mass balance method,ammonia,hydrogen sulfide and sulfur dioxide emissions were determined.The correlation analysis and regression analysis between the climate condition and gas emissions were conducted to assess the data collected in dairy cow barns during the whole study period.There was a significant relationship between environmental conditions and gas emissions.NH3,H2S and SO_(2) emissions from the building are in the range of 0.98-2.36 g/LU·h,0-0.034 g/LU·h,and 0-0.069 g/LU·h,respectively.The numerical analysis shows that the NH3 emission is highly correlated with the temperature and relative humidity.The ventilation rate shows a positive correlation with all the three gases.
基金The authors wish to acknowledge the financial support of the Beijing Science&Technology Commiittee Special Project(Z171100002217018)China Agricultural Research System(CARS-40)Natural Science Foundation of China(31601981).
文摘Pullets often raised in cage system from week 1 to week 13 in China,when transferred to aviary system after,there will be a problem with adapt.A large cage aviary unit(LCAU)system was developed,which allocated with facilities such as ramps to help cage reared hens to adapt to the multi-tier space.To investigate hens’adaptability to the new system,space use over time in the LCAU system during the first 10 days after hens transferred were recorded,instantaneous scan sampling and continuous focal sampling were used to assess the behavior difference of hens between the LCAU and conventional cage(CC)systems.On the first day of arrival,10.03% of hens reached the second tier(S2)and the third tier(S3)of the aviary.During the observation period,an average of 2.42% of hens climbed and stayed at the upper tiers every day.Space allowance on floor of the first tier(S1)increased from 444.62 cm^(2)/hen(91 d)to 586.32 cm^(2)/hen(100 d),which was more than 540 cm^(2)/hen in the CC system.Comfort behaviors in the LCAU system were significantly more than in the CC system(p<0.01)and hens performed more comfort behaviors with the increase of days after transferred.Hens ate and drank less in the LCAU system in the beginning,however,with the increasing use of upper space,hens ate and drank more and more in the LCAU system during the 10 days after transferred from CC system.Consequently,there were no difference of feed behavior between the CC and LCAU systems(p>0.05)on the last 5 days of the whole observing period.The results indicated that hens gradually learned to use the 3-dimensional space in the initial settling-in period and,gained a good welfare condition in LCAU system.Further studies are needed to investigate the three-dimensional preferences and behavior expression in difference period to bridge the gap in knowledge of space use capacity among adult laying hens.
文摘Reliable estimation of the ventilation rate(VR)in intensive livestock buildings is necessary for studying building environmental control strategies and predicting indoor air quality and air emissions.As direct air exchange measurements are time-consuming and expensive,it is environmentally inefficient to measure livestock building VR continuously in practice.Hence,indirect VR estimation methods have been widely used in modelling environmental control and air emissions,and also to measure airflow in the field.The accuracy of indirect measurement methods needs to be evaluated by comparing with direct measurements.In this study,the direct and indirect methods of determining hourly and daily mean VRs were applied to a mechanically-ventilated dairy free stall barn monitored by the 24-month National Air Emissions Monitoring Study.The direct method was used to continuously monitor fan rotational speeds,and differential static pressures,coupled with periodic in-situ fan performance assessments,to calculate the VR.The indirect method consisted of estimating the VR using CO2 concentration measurements and the CO2 mass balance method.The average daily and hourly means(mean±SD)of directly measured barn ventilation rates for two years were(246±73)m3/s and(245±77)m3/s,respectively.The average daily and hourly means(mean±SD)of barn ventilation rates estimated by the CO2 mass balance method were(287±93.4)m3/s and(287±118)m3/s,respectively.Correlation analyses showed a strong correlation between the indirect CO2 mass balance method and direct measurement methods(r=0.93 for daily means and r=0.85 for hourly means).
基金This study was funded by the China Agricultural Research System(CARS-36)the National key research and development plan special project(2018YFF0213604)the National Natural Science Foundation of China(31402115)。
文摘To study the influence of ripple cross angles on the resistance of wet curtains,wet curtains with different ripple cross angles(45°/45°,45°/15°)were tested on agricultural ventilation equipment performance testing benches,and the static pressure drop under different wind speeds(1-3 m/s)was determined.Four turbulence models(κ-ε,RNGκ-ε,κ-ω,SSTκ-ω)were adopted for numerical simulations of the two types of wet curtain,and the simulations’results were compared with those of experiments.The average errors found are 41.1%,48.7%,27.1%,and 27.8%,respectively,and theκ-ωmodel is found to be the most suitable one for the calculation of wet curtain resistance among the four turbulence models.By using theκ-ωturbulence model,the static pressure drop performances of wet curtains with ripple cross angles 45°/35°and 45°/25°were calculated.Resistance increases with wind speed and ripple cross angles,and a large ripple cross angle has a higher resistance growth rate with increasing wind speed.
基金support of this project by the Strategic Priority Research Program of the National Center of Technology Innovation for Pigs(Grant No.NCTIP-XD/B07).
文摘The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.However,the current sterilization technology presents several drawbacks,including time-consuming procedures,chemical residues,and challenges in treating the sewage after rinsing.In this study,a novel cleaning and sterilization method that combines slightly acidic electrolyzed water and high pressure water-jet was developed.An orthogonal test was conducted to examine the correlation between high-pressure conditions and the various non-structural parameters on the efficacy of sterilization rate.In a field test,the effectiveness of the technology in cleaning pig transfer vehicles was evaluated by the total plate count and variations of community composition.The findings revealed that the combination of process parameters,including an available chlorine concentration of 200 mg/L,rinsing pressure of 170 bar,rinsing duration of 10 s,and residence time of 15 min,resulted in a removal rate of colony concentration on the surface of pig transfer vehicles of(96.50±0.91)%.Moreover,it was demonstrated to effectively inhibit a variety of pathogenic bacteria.The innovative cleaning system has the potential to replace traditional methods and reduces pollution while saving time and labor.It introduces a novel approach for sterilization of transportation in livestock and poultry farms as well as the biosafety construction of the animal husbandry.