Over the past few decades, numerous optimization-based methods have been proposed for solving the classification problem in data mining. Classic optimization-based methods do not consider attribute interactions toward...Over the past few decades, numerous optimization-based methods have been proposed for solving the classification problem in data mining. Classic optimization-based methods do not consider attribute interactions toward classification. Thus, a novel learning machine is needed to provide a better understanding on the nature of classification when the interaction among contributions from various attributes cannot be ignored. The interactions can be described by a non-additive measure while the Choquet integral can serve as the mathematical tool to aggregate the values of attributes and the corresponding values of a non-additive measure. As a main part of this research, a new nonlinear classification method with non-additive measures is proposed. Experimental results show that applying non-additive measures on the classic optimization-based models improves the classification robustness and accuracy compared with some popular classification methods. In addition, motivated by well-known Support Vector Machine approach, we transform the primal optimization-based nonlinear classification model with the signed non-additive measure into its dual form by applying Lagrangian optimization theory and Wolfes dual programming theory. As a result, 2n – 1 parameters of the signed non-additive measure can now be approximated with m (number of records) Lagrangian multipliers by applying necessary conditions of the primal classification problem to be optimal. This method of parameter approximation is a breakthrough for solving a non-additive measure practically when there are relatively small number of training cases available (mn-1). Furthermore, the kernel-based learning method engages the nonlinear classifiers to achieve better classification accuracy. The research produces practically deliverable nonlinear models with the non-additive measure for classification problem in data mining when interactions among attributes are considered.展开更多
Abstract Let n ≥ 3. The complex Lie algebra, which is attached to a unit form xixj and defined by generators and generalized Serre relations, is proved to be a finite-dimensional simple Lie algebra of type A~, and r...Abstract Let n ≥ 3. The complex Lie algebra, which is attached to a unit form xixj and defined by generators and generalized Serre relations, is proved to be a finite-dimensional simple Lie algebra of type A~, and realized by the Ringel-Hall Lie algebra of a Nakayama algebra of radical square zero. As its application of the realization, we give the roots and a Chevalley basis of the simple Lie algebra.展开更多
文摘Over the past few decades, numerous optimization-based methods have been proposed for solving the classification problem in data mining. Classic optimization-based methods do not consider attribute interactions toward classification. Thus, a novel learning machine is needed to provide a better understanding on the nature of classification when the interaction among contributions from various attributes cannot be ignored. The interactions can be described by a non-additive measure while the Choquet integral can serve as the mathematical tool to aggregate the values of attributes and the corresponding values of a non-additive measure. As a main part of this research, a new nonlinear classification method with non-additive measures is proposed. Experimental results show that applying non-additive measures on the classic optimization-based models improves the classification robustness and accuracy compared with some popular classification methods. In addition, motivated by well-known Support Vector Machine approach, we transform the primal optimization-based nonlinear classification model with the signed non-additive measure into its dual form by applying Lagrangian optimization theory and Wolfes dual programming theory. As a result, 2n – 1 parameters of the signed non-additive measure can now be approximated with m (number of records) Lagrangian multipliers by applying necessary conditions of the primal classification problem to be optimal. This method of parameter approximation is a breakthrough for solving a non-additive measure practically when there are relatively small number of training cases available (mn-1). Furthermore, the kernel-based learning method engages the nonlinear classifiers to achieve better classification accuracy. The research produces practically deliverable nonlinear models with the non-additive measure for classification problem in data mining when interactions among attributes are considered.
文摘Abstract Let n ≥ 3. The complex Lie algebra, which is attached to a unit form xixj and defined by generators and generalized Serre relations, is proved to be a finite-dimensional simple Lie algebra of type A~, and realized by the Ringel-Hall Lie algebra of a Nakayama algebra of radical square zero. As its application of the realization, we give the roots and a Chevalley basis of the simple Lie algebra.