We perform ^(23)Na nuclear magnetic resonance(NMR) and magnetization measurements on an S=1,quasi-2D honeycomb lattice antiferromagnet Na_(3)Ni_(2)BiO_(6).A large positive Curie-Weiss constant of 22.9 K is observed.Th...We perform ^(23)Na nuclear magnetic resonance(NMR) and magnetization measurements on an S=1,quasi-2D honeycomb lattice antiferromagnet Na_(3)Ni_(2)BiO_(6).A large positive Curie-Weiss constant of 22.9 K is observed.The NMR spectra at low fields are consistent with a zigzag magnetic order,indicating a large easy-axis anisotropy.With the field applied along the c*axis,the NMR spectra confirm the existence of a 1/3-magnetization plateau phase between 5.1 T and 7.1 T.The transition from the zigzag order to the 1/3-magnetization plateau phase is also found to be a first-order type.A monotonic decrease of the spin gap is revealed in the 1/3-magnetization plateau phase,which reaches zero at a quantum critical field H_(C)≈8.35 T before entering the fully polarized phase.These data suggest the existence of exchange frustration in the system along with strong ferromagnetic interactions,hosting the possibility for Kitaev physics.Besides,well below the ordered phase,the 1/T_(1) at high fields shows either a level off or an enhancement upon cooling below 3 K,which suggests the existence of low-energy fluctuations.展开更多
Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamil...Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure.Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram.When approaching to the low temperature limit,several magnetic long range orders are observed,including the stripe,the zigzag,the antiferromagnetic(AFM),the ferromagnetic(FM),the incommensurate spiral(IS),the multi-Q,and the 120°ones.We further calculate the thermodynamic properties of the system,such as the temperature dependence of the magnetic susceptibility and the heat capacity.The ordering transition temperatures reflected in the two quantities agree with each other.For most interaction regions,the system is magnetically more susceptible in the ab-plane than in the c-direction.The stripe phase is special,where the susceptibility is fairly isotropic in the whole temperature region.These features provide useful information to understand the magnetic properties of related materials.展开更多
With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will c...With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will come from solar generation by 2050.This provides the opportunity for researchers to diversify the applications of photovoltaics(PVs)and integrate for daily use in the future.Flexible solar cell technology is the next frontier in solar PV and is the key way to achieve CO_(2)neutrality.The integration of PV technology with other fields will greatly broaden the development areas for the PV industry,providing products with higher added value.In this paper,we reviewed the latest research progress on flexible solar cells(perovskite solar cells,organic solar cells,and flexible silicon solar cells),and proposed the future applications of flexible solar cell technology.展开更多
Based on its band alignment,p-type nickel oxide(NiO_(x))is an excellent candidate material for hole transport layers in crystalline silicon heterojunction solar cells,as it has a smallΔEV and largeΔEC with crystalli...Based on its band alignment,p-type nickel oxide(NiO_(x))is an excellent candidate material for hole transport layers in crystalline silicon heterojunction solar cells,as it has a smallΔEV and largeΔEC with crystalline silicon.Herein,to overcome the poor hole selectivity of stoichiometric NiO_(x) due to its low carrier concentration and conductivity,silver-doped nickel oxide(NiO_(x):Ag)hole transport layers with high carrier concentrations were prepared by co-sputtering high-purity silver sheets and pure NiO_(x) targets.The improved electrical conductivity of NiO_(x) was attributed to the holes generated by the Ag^(+)substituents for Ni^(2+),and moreover,the introduction of Ag^(+)also increased the amount of Ni^(3+)present,both of which increased the carrier concentration in NiO_(x).Ag^(+)doping also reduced the c-Si/NiO_(x) contact resistivity and improved the hole-selective contact with NiO_(x).Furthermore,the problems of particle clusters and interfacial defects on the surfaces of NiO_(x):Ag films were solved by UV-ozone oxidation and high-temperature annealing,which facilitated separation and transport of carriers at the c-Si/NiO_(x) interface.The constructed c-Si/NiO_(x):Ag solar cell exhibited an increase in open-circuit voltage from 490 to 596 mV and achieved a conversion efficiency of 14.4%.展开更多
n-type CZ-Si wafers featuring longer minority carrier lifetime and higher tolerance of certain metal contamination can offer one of the best Si-based solar cells. In this study, Si heterojuction (SHJ) solar cells wh...n-type CZ-Si wafers featuring longer minority carrier lifetime and higher tolerance of certain metal contamination can offer one of the best Si-based solar cells. In this study, Si heterojuction (SHJ) solar cells which was fabricated with different wafers in the top, middle and tail positions of the ingot, exhibited a stable high efficiency of〉 22% in spite of the various profiles of the resistivity and lifetime, which demonstrated the high material utilization of n-type ingot. In addition, for effectively converting the sunlight into electrical power, the pyramid size, pyramid density and roughness of surface of the Cz-Si wafer were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). Furthermore, the dependence of SHJ solar cell open- circuit voltage on the surface topography was discussed, which indicated that the uniformity of surface pyramid helps to improve the open-circuit voltage and conversion efficiency. Moreover, the simulation revealed that the highest efficiency of the SHJ solar cell could be achieved by the wafer with a thickness of 100 μm. Fortunately, over 23% of the conversion efficiency of the SHJ solar cell with a wafer thickness of 100 μm was obtained based on the systematic optimization of cell fabrication process in the pilot production line. Evidently, the large availability of both n-type ingot and thinner wafer strongly supported the lower cost fabrication of high efficiency SHJ solar cell.展开更多
The development of fuel cell vehicles(FCVs)has a major impact on improving air quality and reducing other fossil-fuel-related problems.DC-DC boost converters with wide input voltage ranges and high gains are essential...The development of fuel cell vehicles(FCVs)has a major impact on improving air quality and reducing other fossil-fuel-related problems.DC-DC boost converters with wide input voltage ranges and high gains are essential to fuel cells and DC buses in the powertrains of FCVs,helping to improve the low voltage of fuel cells and“soft”output characteristics.To build DC-DC converters with the desired performance,their topologies have been widely investigated and optimized.Aiming to obtain the optimal design of wide input range and high-gain DC-DC boost converter topologies for FCVs,a review of the research status of DC-DC boost converters based on an impedance network is presented.Additionally,an evaluation system for DC-DC topologies for FCVs is constructed,providing a reference for designing wide input range and high-gain boost converters.The evaluation system uses eight indexes to comprehensively evaluate the performance of DC-DC boost converters for FCVs.On this basis,issues about DC-DC converters for FCVs are discussed,and future research directions are proposed.The main future research directions of DC-DC converter for FCVs include utilizing a DC-DC converter to realize online monitoring of the water content in FCs and designing buck-boost DC-DC converters suitable for high-power commercial FCVs.展开更多
Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency(PCE)beyond the limits of single-junction cells.However,their performance is still ...Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency(PCE)beyond the limits of single-junction cells.However,their performance is still largely constrained by the widebandgap perovskite solar cells which show considerable open-circuit voltage(VOC)losses.Here,we increase the VOCand PCE of wide-bandgap perovskite solar cells by changing the hole transport layer(HTL)from commonly used poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)(PTAA)to in-situ cross-linked small molecule N_(4),N_(4)′-di(naphthalen-1-yl)-N_(4),N_(4)′-bis(4-vinylphenyl)biphenyl-4,4′-diamine(VNPB).The stronger interaction and lower trap density at the VNPB/perovskite interface improve the PCE and stability of wide-bandgap perovskite solar cells.By using the cross-linked HTL for front wide-bandgap subcells,PCEs of 24.9%and 25.4%have been achieved in perovskite/perovskite and perovskite/silicon tandem solar cells,respectively.The results demonstrate that cross-linkable small molecules are promising for high-efficiency and cost-effective perovskite tandem photovoltaic devices.展开更多
In all the connexin-associated human diseases, deafness is one of the most important diseases with high frequency. The mu- tations of GJB2 (gap junction protein β2, also called connexin 26, Cx26) gene link with non...In all the connexin-associated human diseases, deafness is one of the most important diseases with high frequency. The mu- tations of GJB2 (gap junction protein β2, also called connexin 26, Cx26) gene link with nonsyndromic or syndromic senso- rineural hearing loss and were shown to account for a large proportion of congenital deaf cases in many studied populations (del Castillo and del Castillo, 2011). For example, the 235de1C mutation in GJB2 shows the frequency of approximately 1% and is the most frequent mutation in East Asian population (Yan et al., 2003). Many efforts have been put to study the function of Gjb2 gene in both mouse model and human. In mouse, extensive deletion of Gjb2 causes embryo lethal due to the decreased transplacental glucose uptake, which was not found in human (Takata and Hirano, 1997; Gabriel et al., 1998). In human, GJB2 deficiency is not able to cause embryo lethal (D'Andrea et al., 2002). However, the study of GJB2-associated hearing loss is hampered by many difficulties, such as unobtainable human cochlea and acoustic nerve tissues, and therefore the GJB2-associated hearing loss are underlying mechanisms of still remaining unclear.展开更多
基金Project supported by the National Key R&D Program of China (Grant Nos. 2023YFA1406500, 2022YFA1402700, and 2021YFA1400400)the National Natural Science Foundation of China (Grant Nos. 12134020, 12374156, 12104503,12061131004, 12225407, and 12074174)。
文摘We perform ^(23)Na nuclear magnetic resonance(NMR) and magnetization measurements on an S=1,quasi-2D honeycomb lattice antiferromagnet Na_(3)Ni_(2)BiO_(6).A large positive Curie-Weiss constant of 22.9 K is observed.The NMR spectra at low fields are consistent with a zigzag magnetic order,indicating a large easy-axis anisotropy.With the field applied along the c*axis,the NMR spectra confirm the existence of a 1/3-magnetization plateau phase between 5.1 T and 7.1 T.The transition from the zigzag order to the 1/3-magnetization plateau phase is also found to be a first-order type.A monotonic decrease of the spin gap is revealed in the 1/3-magnetization plateau phase,which reaches zero at a quantum critical field H_(C)≈8.35 T before entering the fully polarized phase.These data suggest the existence of exchange frustration in the system along with strong ferromagnetic interactions,hosting the possibility for Kitaev physics.Besides,well below the ordered phase,the 1/T_(1) at high fields shows either a level off or an enhancement upon cooling below 3 K,which suggests the existence of low-energy fluctuations.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504)the National Natural Science Foundation of China (Grant Nos. U1932215, 11774419, 11574392, and 11974421)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100)the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China (Grant No. 19XNLG11)the support from Users with Excellence Program of Hefei Science CenterHigh Magnetic Field Facility,CAS
文摘Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure.Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram.When approaching to the low temperature limit,several magnetic long range orders are observed,including the stripe,the zigzag,the antiferromagnetic(AFM),the ferromagnetic(FM),the incommensurate spiral(IS),the multi-Q,and the 120°ones.We further calculate the thermodynamic properties of the system,such as the temperature dependence of the magnetic susceptibility and the heat capacity.The ordering transition temperatures reflected in the two quantities agree with each other.For most interaction regions,the system is magnetically more susceptible in the ab-plane than in the c-direction.The stripe phase is special,where the susceptibility is fairly isotropic in the whole temperature region.These features provide useful information to understand the magnetic properties of related materials.
基金supported by the National Natural Science Foundation of China(T2322028,62105129,and 62004208)Sichuan Science and Technology Program(2023ZYD0163)+2 种基金the Science and Technology Commission of Shanghai Municipality(22ZR1473200)the Rising-Star Program of the Shanghai 2023 Science and Technology Innovation Action Plan(23QA1411100)the Autonomous Deployment Project of State Key Laboratory of Materials for Integrated Circuits(NKLJC-Z2023ZD01)。
文摘With the gradual progression of the carbon neutrality target,the future of our electricity supply will experience a massive increase in solar generation,and approximately 50%of the global electricity generation will come from solar generation by 2050.This provides the opportunity for researchers to diversify the applications of photovoltaics(PVs)and integrate for daily use in the future.Flexible solar cell technology is the next frontier in solar PV and is the key way to achieve CO_(2)neutrality.The integration of PV technology with other fields will greatly broaden the development areas for the PV industry,providing products with higher added value.In this paper,we reviewed the latest research progress on flexible solar cells(perovskite solar cells,organic solar cells,and flexible silicon solar cells),and proposed the future applications of flexible solar cell technology.
基金supported by the National Natural Science Foundation of China(Grant No.61974076)the China National Key R&D Program(Grant No.2022YFC2807104).
文摘Based on its band alignment,p-type nickel oxide(NiO_(x))is an excellent candidate material for hole transport layers in crystalline silicon heterojunction solar cells,as it has a smallΔEV and largeΔEC with crystalline silicon.Herein,to overcome the poor hole selectivity of stoichiometric NiO_(x) due to its low carrier concentration and conductivity,silver-doped nickel oxide(NiO_(x):Ag)hole transport layers with high carrier concentrations were prepared by co-sputtering high-purity silver sheets and pure NiO_(x) targets.The improved electrical conductivity of NiO_(x) was attributed to the holes generated by the Ag^(+)substituents for Ni^(2+),and moreover,the introduction of Ag^(+)also increased the amount of Ni^(3+)present,both of which increased the carrier concentration in NiO_(x).Ag^(+)doping also reduced the c-Si/NiO_(x) contact resistivity and improved the hole-selective contact with NiO_(x).Furthermore,the problems of particle clusters and interfacial defects on the surfaces of NiO_(x):Ag films were solved by UV-ozone oxidation and high-temperature annealing,which facilitated separation and transport of carriers at the c-Si/NiO_(x) interface.The constructed c-Si/NiO_(x):Ag solar cell exhibited an increase in open-circuit voltage from 490 to 596 mV and achieved a conversion efficiency of 14.4%.
基金supported by the National Natural Science Foundation of China(T2322028,62004208,and 62074153)the Science and Technology Commission of Shanghai Municipality(22ZR1473200)+1 种基金China National Key R&D Program(2022YFC2807104)the Research on the Key Technologies of High Efficiency Ultra-thin Heterojunction Solar Cell and Module(HNKJ22-H154).
文摘n-type CZ-Si wafers featuring longer minority carrier lifetime and higher tolerance of certain metal contamination can offer one of the best Si-based solar cells. In this study, Si heterojuction (SHJ) solar cells which was fabricated with different wafers in the top, middle and tail positions of the ingot, exhibited a stable high efficiency of〉 22% in spite of the various profiles of the resistivity and lifetime, which demonstrated the high material utilization of n-type ingot. In addition, for effectively converting the sunlight into electrical power, the pyramid size, pyramid density and roughness of surface of the Cz-Si wafer were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). Furthermore, the dependence of SHJ solar cell open- circuit voltage on the surface topography was discussed, which indicated that the uniformity of surface pyramid helps to improve the open-circuit voltage and conversion efficiency. Moreover, the simulation revealed that the highest efficiency of the SHJ solar cell could be achieved by the wafer with a thickness of 100 μm. Fortunately, over 23% of the conversion efficiency of the SHJ solar cell with a wafer thickness of 100 μm was obtained based on the systematic optimization of cell fabrication process in the pilot production line. Evidently, the large availability of both n-type ingot and thinner wafer strongly supported the lower cost fabrication of high efficiency SHJ solar cell.
基金This work was sponsored thought the International Science&Technology Cooperation of China under 2019YFE0100200 and the Fundamental Research Foundation for Universities of Heilongjiang Province(2018-KYYWF-1672).
文摘The development of fuel cell vehicles(FCVs)has a major impact on improving air quality and reducing other fossil-fuel-related problems.DC-DC boost converters with wide input voltage ranges and high gains are essential to fuel cells and DC buses in the powertrains of FCVs,helping to improve the low voltage of fuel cells and“soft”output characteristics.To build DC-DC converters with the desired performance,their topologies have been widely investigated and optimized.Aiming to obtain the optimal design of wide input range and high-gain DC-DC boost converter topologies for FCVs,a review of the research status of DC-DC boost converters based on an impedance network is presented.Additionally,an evaluation system for DC-DC topologies for FCVs is constructed,providing a reference for designing wide input range and high-gain boost converters.The evaluation system uses eight indexes to comprehensively evaluate the performance of DC-DC boost converters for FCVs.On this basis,issues about DC-DC converters for FCVs are discussed,and future research directions are proposed.The main future research directions of DC-DC converter for FCVs include utilizing a DC-DC converter to realize online monitoring of the water content in FCs and designing buck-boost DC-DC converters suitable for high-power commercial FCVs.
基金financially supported by the National Key R&D Program of China(2018YFB1500102)the National Natural Science Foundation of China(61974063,22005139)+5 种基金Natural Science Foundation of Jiangsu Province(BK20202008,BK20190315)Fundamental Research Funds for the Central Universities(0205/14380252)Program for Innovative Talents and Entrepreneur in Jiangsusupported by the National Natural Science Foundation of China(62074153)Strategic Priority Research Program of Chinese Academy of Sciences(XDA17020403)Science and Technology Commission of Shanghai(19DZ1207602 and 20DZ1207103)。
文摘Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency(PCE)beyond the limits of single-junction cells.However,their performance is still largely constrained by the widebandgap perovskite solar cells which show considerable open-circuit voltage(VOC)losses.Here,we increase the VOCand PCE of wide-bandgap perovskite solar cells by changing the hole transport layer(HTL)from commonly used poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)(PTAA)to in-situ cross-linked small molecule N_(4),N_(4)′-di(naphthalen-1-yl)-N_(4),N_(4)′-bis(4-vinylphenyl)biphenyl-4,4′-diamine(VNPB).The stronger interaction and lower trap density at the VNPB/perovskite interface improve the PCE and stability of wide-bandgap perovskite solar cells.By using the cross-linked HTL for front wide-bandgap subcells,PCEs of 24.9%and 25.4%have been achieved in perovskite/perovskite and perovskite/silicon tandem solar cells,respectively.The results demonstrate that cross-linkable small molecules are promising for high-efficiency and cost-effective perovskite tandem photovoltaic devices.
基金supported by grants from the National Key Basic Research Programs of China (Nos. 2012CB966600 and 2012CB967900)the National Natural Science Foundation Project (No. 31371506)the 12th Five-Year National Key Technologies R&D Program (No. 2012BAI12B00)
文摘In all the connexin-associated human diseases, deafness is one of the most important diseases with high frequency. The mu- tations of GJB2 (gap junction protein β2, also called connexin 26, Cx26) gene link with nonsyndromic or syndromic senso- rineural hearing loss and were shown to account for a large proportion of congenital deaf cases in many studied populations (del Castillo and del Castillo, 2011). For example, the 235de1C mutation in GJB2 shows the frequency of approximately 1% and is the most frequent mutation in East Asian population (Yan et al., 2003). Many efforts have been put to study the function of Gjb2 gene in both mouse model and human. In mouse, extensive deletion of Gjb2 causes embryo lethal due to the decreased transplacental glucose uptake, which was not found in human (Takata and Hirano, 1997; Gabriel et al., 1998). In human, GJB2 deficiency is not able to cause embryo lethal (D'Andrea et al., 2002). However, the study of GJB2-associated hearing loss is hampered by many difficulties, such as unobtainable human cochlea and acoustic nerve tissues, and therefore the GJB2-associated hearing loss are underlying mechanisms of still remaining unclear.