A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) sy...A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) system was employed for the measurements. The GA was used to extract the thermal properties. Measurements were performed on SiO2 thin films of different thicknesses on silicon substrate. The results show that the GA accompanied with the PPR system is useful for the simultaneous determination of thermal properties of thin films on a substrate.展开更多
基金financial support from the Tencent AI Lab Rhino-Bird Gift Fund(9229073)the Project by Shanghai Artificial Intelligence Laboratory(P22KS00111)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study。
基金the National Natural Science Foundation of China under Grant Nos. 59995550-5 , 90207003.
文摘A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) system was employed for the measurements. The GA was used to extract the thermal properties. Measurements were performed on SiO2 thin films of different thicknesses on silicon substrate. The results show that the GA accompanied with the PPR system is useful for the simultaneous determination of thermal properties of thin films on a substrate.